Lockheed XF-104 prototype, 53-7786, photographed 5 March 1954. (Lockheed Martin)
4 March 1954: Lockheed test pilot Anthony W. LeVier takes the prototype XF-104 Starfighter, 53-7786, for its first flight at Edwards Air Force Base in the high desert of southern California. The airplane’s landing gear remained extended throughout the flight, which lasted about twenty minutes.
Lockheed XF-104 53-7786 rolling out on Rogers Dry Lake, Edwards Air Force Base, California. This photograph shows how short the XF-104 was in comparison to the production F-104A. Because of the underpowered J65-B-3 engine, there are no shock cones in the engine inlets. (U.S. Air Force via Jet Pilot Overseas)
Designed by the legendary Kelly Johnson, the XF-104 was a prototype Mach 2+ interceptor and was known in the news media of the time as “the missile with a man in it.”
Tony LeVier was a friend of my mother’s family and a frequent visitor to their home in Whittier, California.
Legendary aircraft designer Clarence L. “Kelly” Johnson shakes hands with test pilot Tony LeVier after the first flight of the XF-104 at Edwards Air Force Base. (Lockheed via Mühlböck collection)
There were two Lockheed XF-104 prototypes. Initial flight testing was performed with 083-1001 (USAF serial number 53-7786). The second prototype, 083-1002 (53-7787) was the armament test aircraft. Both were single-seat, single-engine supersonic interceptor prototypes.
The wing of the Lockheed XF-104 was very thin, with leading and trailing edge flaps and ailerons. (San Diego Air & Space Museum)
The XF-104 was 49 feet, 2 inches (14.986 meters) long with a wingspan of 21 feet, 11 inches (6.680 meters) and overall height of 13 feet, 6 inches (4.115 meters). The wings had 10° anhedral. The prototypes had an empty weight of 11,500 pounds (5,216 kilograms) and maximum takeoff weight of 15,700 pounds (7,121 kilograms).
Lockheed XF-104 53-7786 (San Diego Air & Space Museum)
The production aircraft was planned for a General Electric J79 afterburning turbojet but that engine would not be ready soon enough, so both prototypes were designed to use a Buick-built J65-B-3, a licensed version of the British Armstrong Siddeley Sapphire turbojet engine. The J65-B-3 was a single-shaft axial-flow turbojet with a 13-stage compressor section and 2-stage turbine. It produced 7,200 pounds of thrust (32.03 kilonewtons) at 8,200 r.p.m. The J65-B-3 was 9 feet, 7.0 inches (2.921 meters) long, 3 feet, 1.5 inches (0.953 meters) in diameter, and weighed 2,696 pounds (1,223 kilograms).
On 15 March 1955, XF-104 53-7786 reached a maximum speed of Mach 1.79 (1,181 miles per hour, 1,900 kilometers per hour), at 60,000 feet (18,288 meters).
XF-104 53-7786 was destroyed 11 July 1957 when the vertical fin was ripped off by uncontrollable flutter. The pilot, William C. Park, safely ejected.
Lockheed XF-104 53-7786 with wingtip fuel tanks. (Lockheed Martin)
Lockheed XF-104 53-7786 with wingtip fuel tanks. Compare these finned tanks to those in the image above. (Lockheed Martin)
Lockheed Martin has an excellent color video of the XF-104 first flight on their web site at:
Aérospatiale Concorde 001 first flight, at Toulouse, 2 March 1969, test pilot André Edouard Turcat.
2 March 1969: Just three weeks after the prototype Boeing 747, City of Everett, made its first flight at Seattle, Washington, the first supersonic airliner prototype, Aérospatiale-BAC Concorde Aircraft 001, registration F-WTSS, made its first flight, taking off from Runway 33 at the Aéroport de Toulouse-Blagnac, Toulouse, France.
On the flight deck were André Édouard Marcel Turcat, Henri Perrier, Michel Retif and Jacques Guinard.
The flight lasted 27 minutes. Throughout the flight, the “droop nose” and landing gear remained lowered.
Concorde was the only commercial airliner capable of cruising at supersonic speeds.
The flight test crew of Concorde 001. Left to right, André Edouard Turcat, Henri Perrier, Michel Retif and Jacques Guinard. (Photograph courtesy of Neil Corbett, Test & Research Pilots, Flight Test Engineers)
There were two Concorde prototypes (the British Aerospace Corporation built Concorde 002) followed by two pre-production developmental aircraft and sixteen production airliners.
Concorde 001 is 51.80 meters (169 feet, 11.4 inches) long, with a wingspan of 23.80 meters (78 feet, 1 inch). Its fuselage has a maximum height of 3.32 meters (10 feet, 10.7 inches) and maximum width of 2.88 meters (9 feet, 5.4 inches) max internal height 1.96 m (6 feet, 5.2 inches). The prototype’s empty weight is 78,700 kilograms (173,504 pounds), and the maximum takeoff weight is 185,000 kilograms (407,855 pounds). (Pre-production and production Concorde weights and dimensions vary.)
The Concorde is powered by four Rolls-Royce/SNECMA Olympus 593 Mk.610 engines. The Mk. 610 is a two-spool, axial-flow turbojet with afterburner. The compressor section as 14 stages (7 low- and 7 high-pressure stages). Two-stage turbine has 1 high- and 1 low-pressure stage. The engine has a maximum continuous power rating of 28,800 pounds of thrust (128.11 kilonewtons). It is rated at 37,080 pounds (164.94 kilonewtons) for takeoff (5 minute limit). During takeoff, the afterburners produce approximately 20% of the total thrust. The Olympus 593 Mk.613 is 1.212 meters (3.976378 feet) in diameter, 4.039 meters (13.251312 feet)long, and weighs 3,175 kilograms (7,000 pounds).
Production Concordes were certified for a maximum operating cruise speed of Mach 2.04, and a maximum operating altitude of 60,000 feet (18.288 meters). The maximum range 3,900 was nautical miles (4,488 statute miles/7,223 kilometers).
Concorde 001 made 397 flight during flight testing. It accumulated a total of 812 hours, 19 minutes of flight time, of which 254 hours, 49 minutes were supersonic.
Today, Concorde 001 is displayed at the Musée de l’Air et de l’Espace, Aéroport de Paris – Le Bourget.
André Édouard Marcel Turcat was born 23 October 1921 at Marseille, Bouches-du-Rhône, Provence-Alpes-Côte d’Azur, France. André was the son of Emile Gaston Turcat and Claire Victoria Jeane Marie Françoise Fleury Turcat. His uncle, Léon Turcat, was co-founder of Ateliers de Construction d’Automobiles Turcat-Méry SA, a manufactuers of grand prix race cars. He was educated at l’École Polytechnique in Palaiseau, a suburb southwest of Paris.
Turcat
During World War II, Turcat served in the Forces Aériennes Françaises Libres, (the Free French Air Force).
On the day that World War II ended in Europe, 8 May 1945, André Turcat married Mlle Elisabeth Marie (“Julie”) Borelli in Marseille. They would have four children. One, a daughter, died in infancy.
Andre Turcat remained in the Armée de l’air after the war. He flew the Douglas C-47 Skytrain during the First Indochina War. He was awarded the Croix de Guerre des théâtres d’opérations extérieures.
In 1950, Turcat was admitted to the École du personnel navigant d’essais et de réception (EPNER), the test pilot school at Brétigny-sur-Orge, France. He served as director of EPNER, 1952–53.
In 1954, Major Turcat resigned from the Armée de l’air and became the chief test pilot at Société Française d’Etude et de Construction de Matériel Aéronautiques Spéciaux (SFECMAS) (later, Nord-Aviation), flight-testing the Nord 1500 Griffon. He made the first flight of the Nord 1500-01 Griffon, 20 September 1955. He flew the Griffon II, a mixed-propulsion aircraft powered by a turbojet and a ramjet engine, beginning with its first flight, 23 January 1957.
Flying a Griffon, Turcat set three Fédération Aéronautique Internationale (FAI) World Records for Time to Altitude, 16 February 1957: 6,000 meters, 1:17.05;¹ 9,000 meters, 1:33.75;² and 12,000 meters, 2:17.70.³
Turcat reached Mach 2.19 with the Griffon II, for which he was awarded the Harmon Trophy for 1958. The trophy was presented by Richard M. Nixon, 37th President of the United States.
On 25 February 1959, Turcat flew the Griffon II to set an FAI World Record for Speed Over a Closed Circuit of 100 Kilometers, with an average speed of 1,643.00 kilometers per hour (1.015.32 miles per hour).⁴ The Académie des Sports awarded him its Prix Robert Peugeot for the greatest feat accomplished by French athletes in motorsports.
André Edouard Marcel Turcat (fifth from right) with the Nord 1500-02 Griffon, circa January 1957
Turcat joined Sud-Aviation as chief pilot for the Concorde.
Turcat and British Aerospace chief test pilot Ernest Brian Trubshaw, C.B.E., M.V.O., shared the 1970 Harmon Trophy, and in 1971, the Iven C. Kincheloe Award of the Society of Experimental Test Pilots, Iven C. Kincheloe Award for their outstanding professional accomplishments in flight testing.
André Turcat and Brian Trubshaw.
After 740 flight hours in Concorde, Andre Turcat retired from Aérospatiale, 31 March 1976. He never flew an airplane again.
As a politician, M. Turcat served as deputy mayor of Toulouse, 1971–77; and as a member of the European Parliament, 1980–81.
In 1983, Turcat founded l’Académie nationale de l’air et de l’espace (ANAE) and served as its first president.
In 1990 Turcat earned a doctorate degree in the study of Christian art. He was the author of Pilote d’essais (Ciels du monde t.1); Concorde: Essais d’hier, betailles d’aujourd’hui, 30 and de réve; Les plus beaux textes de la Bible; Moi, Etienne Jamet, alias Esteban Jamete: Sculpteur français de la Renaissance en Espagne comdamné par l’Inquisition; and Une épopeé française.
During his aviation career, Turcat flew more than 6,500 hours in 110 different aircraft. He had been awarded the Médaille de l’Aéronautique. The United Kingdom had appointed him Commander of the Most Excellent Order of the British Empire (C.B.E.). In 2005 Andre Turcat was named Grand Officier Ordre national de la Légion d’honneur.
André Édouard Marcel Turcat died at his home in Aix-en-Provence, 3 January 2016 at the age of 94 years.
Republic XP-84 prototype 45-59475 at landing at Muroc Army Airfield, California, 1946. (U.S. Air Force )Wallace A. Lien
28 February 1946: At Muroc Army Airfield, California, (now, Edwards Air Force Base) the first of three prototype Republic Aviation Corporation XP-84 Thunderjet fighter bombers, serial number 45-59475, made its first flight with company test pilot Wallace Addison Lien in the cockpit.
Alexander Kartveli, Chief Engineer of the Republic Aviation Corporation, began working on the XP-84 during 1944 as a jet-powered successor to the company’s P-47 Thunderbolt fighter bomber. The prototype was completed at the factory in Farmingdale, New York, in December 1945. It was then partially disassembled and loaded aboard Boeing’s prototype XC-97 Stratofreighter and flown west to Muroc Army Airfield in the high desert of southern California. It was reassembled and prepared for its first flight.
The prototype Republic XP-84, as yet unpainted. (San Diego Air & Space Museum Archive)
The XP-84 was 37 feet, 2 inches (11.328 meters) long, with a wingspan of 36 feet, 5 inches (11.100 meters) and overall height of 12 feet, 10 inches (3.912 meters). The wings had a total area of 260 square feet ( square meters). The leading edges were swept aft to 6° 15′. The angle of incidence was 0° with -2° of twist and 4° dihedral. The airplane had an empty weight of 9,080 pounds (4,119 kilograms) and gross weight of 13,400 pounds (6,078 kilograms).
Republic XP-84. (U.S. Air Force photo)
The XP-84 was powered by a General Electric J35-GE-7 engine. The J35 was a single-spool, axial-flow turbojet engine with an 11-stage compressor and single-stage turbine. The J35-GE-7 was rated at 3,750 pounds of thrust (16.68 kilonewtons) at 7,700 r.p.m. (5-minute limit). The engine was 14 feet, 0.0 inches (4.267 meters) long, 3 feet, 4.0 inches (1.016 meters) in diameter and weighed 2,400 pounds (1,089 kilograms).
The first of three prototypes, Republic XP-84 Thunderjet 45-59475 is parked on the dry lake at Muroc Army Airfield. (U.S. Air Force)
The XP-84 had a cruise speed of 440 miles per hour (708 kilometers per hour) and maximum speed of 592 miles per hour (953 kilometers per hour). The service ceiling was 35,000 feet (10,668 meters), which it could reach in approximately 13 minutes. The maximum range was 1,300 miles (2,092 kilometers).
Republic XP-84 Thunderjet 45-59475. (U.S. Air Force)Republic XP-84 Thunderjet 45-59475. (U.S. Air Force)Republic XP-84 Thunderjet 45-59475. (U.S. Air Force)Republic XP-84 Thunderjet 45-59475. (U.S. Air Force)Republic XP-84 Thunderjet 45-59475 in flight. (U.S. Air Force)
Wallace Addison Lien was born at Alkabo, in Divide County, at the extreme northwest corner of North Dakota, 13 August 1915. He was the second of six children of Olaf Paulson Lien, a Norwegian immigrant and well contractor, and Elma Laura Richardson Lien.
Wallace A. Lien (The 1939 Gopher)
Wally Lien graduated from the University of Minnesota Institute of Technology 17 June 1939 with a Bachelor’s Degree in Mechanical Engineering (B.M.E.). He was a president of the Pi Tau Sigma (ΠΤΣ) fraternity, a member of the university’s cooperative book store board, and a member of the American Society of Mechanical Engineers (A.S.M.E.). He later studied at the California Institute of Technology (CalTech) at Pasadena, California, and earned a master’s degree in aeronautical engineering.
Lien worked as a an engineer at a steel sheet mill in Pennsylvania. He enlisted in the the United States Army at Pittsburgh, Pennsylvania, 18 February 1941. He was accepted as an aviation cadet at Will Rogers Field, Oklahoma City, Oklahoma, 11 November 1941. 26 years old, Lien was 6 feet, 2 inches (1.88 meters) tall and weighed 174 pounds (79 kilograms). During World War II, Lien remained in the United States, where he served as a test pilot at Wright Field, Dayton, Ohio. He conducted flight tests of the Bell YP-59A Airacomet and the Lockheed XP-80 Shooting Star. Having reached the rank of Major, he left the Air Corps, 16 February 1946. Lien then worked for the Republic Aviation Corporation, testing the XP-84. A few months later, Lien went to North American Aviation, where he made the first flight of the the XFJ-1 Fury, 11 September 1946
Wally Lien married Miss Idella Muir at Elizabeth, New Jersey, 26 December 1946. They would have two children.
Wallace Addison Lien died at Colorado Springs, Colorado, 28 October 1994, at the age of 79 years. He was buried at the Shrine of Remembrance Veterans Honor Court, Colorado Springs, Colorado
Major Rudolph William Schroeder, Air Service, United States Army
27 February 1920: Major Rudolph William Schroeder, Chief Test Pilot of the Engineering Division, McCook Field, Ohio, flew a Packard Lepère L USA C.II biplane to a Fédération Aéronautique Internationale (FAI) World Record Altitude of 10,093 meters (33,114 feet).¹ The biplane was powered by a turbosupercharged Liberty L-12 aircraft engine producing 443 horsepower.
There are differing accounts of what occurred during the flight. One report is that the L USA C.II created the very first contrail as it flew at altitudes and temperatures never before reached. Also, there are differences in explanations of some type of problem with Major Schroeder’s oxygen supply. A valve may have frozen, the regulator did not operate correctly, or one of his tanks was empty. Another source says that he ran out of fuel. But he apparently suffered hypoxia and began to lose consciousness. He may have lost control, or intentionally dived for lower altitude. The airplane dived nearly 30,000 feet (9,144 meters) before Schroeder pulled out and safely landed. He was in immediate need of medical attention, however.
Recording instruments indicated that he had been exposed to a temperature of -67 °F. (-55 °C.). His goggles had iced over, and when he raised them, his eyes were injured by the severe cold.
Schroeder’s barograph recorded a peak altitude of 37,000 feet (11,277.6 meters). When the device was calibrated after landing, it indicated that his actual maximum altitude was 36,020 feet (10,979 meters).
The Fédération Aéronautique Internationale (FAI) delegated responsibility for certifying the record to the Aero Club of America, whose representatives apparently felt that procedures for setting the record had not been correctly followed, and declined to accept the altitude record.
The National Bureau of Standards next evaluated the data and credited Rudolph Schroeder with having reached 33,180 feet (10,113 meters). Regardless, the current official record altitude, according to FAI, remains 10,093 meters (33,114 feet).
Major Rudolph W. Schroeder flying a Packard Lepère L USA C.II, A.S. 40015, over McCook Field, Ohio, 24 September 1919. (U.S. Air Force)
The Packard Lepère L USA C.II was a single-engine, two-place biplane fighter which was designed by the French aeronautical engineer, Capitaine Georges Lepère, who had previously designed the Section Technique de l’Aeronautique Dorand AR.1 reconnaissance airplane for France’s military air service. The new airplane was built in the United States by the Packard Motor Car Company of Detroit, Michigan. It was a two-place fighter, or chasseur, light bomber, and observation aircraft, and was armed with four machine guns.
The L USA C.II was 25 feet, 3-1/8 inches (7.699 meters) long. The upper and lower wings had an equal span of 41 feet, 7¼ inches (12.681 meters), and equal chord of 5 feet, 5¾ inches (1.670 meters). The vertical gap between the wings was 5 feet, 1/8-inch (1.527 meters) and the lower wing was staggered 2 feet, 15/16-inch (0.633 meters) behind the upper wing. The wings’ incidence was +1°. Upper and lower wings were equipped with ailerons, and had no sweep or dihedral. The height of the Packard Lepère, sitting on its landing gear, was 9 feet, 7 inches (2.921 meters).
Packard Lepère L USA C.II P53, A.S. 40015, left profile. The turbocharger is mounted above the propeller driveshaft. (U.S.. Air Force)
The fuselage was a wooden structure with a rectangular cross section. It was covered with three layers of veneer, (2 mahogany, 1 white wood) with a total thickness of 3/32-inch (2.38 millimeters). The fuselage had a maximum width of 2 feet, 10 inches (0.864 meters) and maximum depth of 4 feet, 0 inches (1.219 meters).
The wings were also of wooden construction, with two spruce spars and spruce ribs. Three layers of wood veneer covered the upper surfaces.
The Packard Lepère had an empty weight of 2,561.5 pounds (1,161.9 kilograms) and its gross weight was 3,746.0 pounds (1,699.2 kilograms).
The Packard Lepère was powered by a water-cooled, normally-aspirated, 1,649.34-cubic-inch-displacement (27.028 liter) Packard-built Liberty 12 single overhead cam (SOHC) 45° V-12 engine, which produced 408 horsepower at 1,800 r.p.m., and drove a two-bladed, fixed-pitch propeller with a diameter of 9 feet, 10 inches (2.997 meters). The Liberty 12 was 5 feet, 7.375 inches (1.711 meters) long, 2 feet, 3.0 inches (0.686 meters) wide, and 3 feet, 5.5 inches (1.054 meters) high. It weighed 844 pounds (383 kilograms).
The engine coolant radiator was positioned horizontally in the center section of the airplane’s upper wing. Water flowed through the radiator at a rate of 80 gallons (303 liters) per minute.
Packard-Lèpere L USA C.II P53, A.S. 40015. (U.S. Air Force)
The L USA C.II had a maximum speed of 130.4 miles per hour (209.9 kilometers per hour) at 5,000 feet (1,524 meters), 127.6 miles per hour (205.4 kilometers per hour) at 10,000 feet (3,048 meters), 122.4 miles per hour (197.0 kilometers per hour) at 15,000 feet (4,572 meters), 110.0 miles per hour (177.0 kilometers per hours) at 18,000 feet (5,486 meters) and 94.0 miles per hour (151.3 kilometers per hour) at 20,000 feet (6,096 meters). Its cruising speed was 112 miles per hour (180 was kilometers per hour). The airplane could climb to 5,000 feet in 4 minutes, 24 seconds, and to 20,000 feet in 36 minutes, 36 seconds. In standard configuration, the LUSAC 11 had a service ceiling of 20,200 feet (6,157 meters). Its range was 320 miles (515 kilometers).
Packard Lepère L USA C.II, P54, S.C. 42138. (U.S. Air Force)
Armament consisted of two fixed M1918 Marlin .30-caliber machine guns mounted on the right side of the fuselage, synchronized to fire forward through the propeller arc, with 1,000 rounds of ammunition, and two M1918 Lewis .30-caliber machine guns on a flexible mount with 970 rounds of ammunition.
The Air Service had ordered 3,525 of these airplanes, but when the War ended only 28 had been built. The contract was cancelled.
The only Packard Lepère L USA C.II in existence, serial number A.S. 42133, is in the collection of the National Museum of the United States Air Force, Wright-Patterson Air Force Base, Ohio.
Packard Lepère L USA C.II, A.S 42133, at the National Museum of the United States Air Force. (U.S. Air Force)
¹ FAI Record File Number 8229: 10 093 m (33,114 feet)
North American Aviation production test pilot George Franklin Smith with a North American F-100A Super Sabre (NASM)
26 February 1955: Although it was his day off, North American Aviation production test pilot George Franklin Smith stopped by the office at Los Angeles Airport (today, known as Los Angeles International airport, or simply “LAX”, its FAA airport identifier). The company’s flight dispatcher told him that a brand-new F-100A-20-NA Super Sabre, serial number 53-1659, was sitting on the flight line and needed to be test flown before being turned over to the Air Force.
North American Aviation production test pilot George F. Smith (left) walks away from an F-100 Super Sabre. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineeers)
Smith was happy to take the flight. He departed LAX in full afterburner and headed off shore, climbing to 35,000 feet (10,668 meters) over the Pacific Ocean to start the test sequence.
A North American F-100A-1-NA Super Sabre, 52-5757 (the second production airplane) takes off at Los Angeles International Airport. (This airplane, flown by NAA test pilot Bob Hoover, crashed east of Palmdale, California, 7 July 1955, when he could not recover from a flat spin. Hoover safely ejected but the Super Sabre was destroyed.) (North American Aviation, Inc.)
But it was quickly apparent that something was wrong: The flight controls were heavy, and then there was a hydraulic system failure that caused the Super Sabre pitch down into a dive. Smith couldn’t pull it out of the dive and the airplane’s speed rapidly increased, eventually passing Mach 1.
Smith was unable to regain control of the F-100. He had no choice but to bail out. As he ejected, Smith read the instruments: the Mach meter indicated Mach 1.05—785 miles per hour (1,263 kilometers per hour)—and the altitude was only 6,500 feet (1,981 meters).
Smith recovering in hospital after his supersonic ejection. (Getty Images)
The force of the wind blast hitting him as he came out of the cockpit knocked him unconscious. Estimates are that he was subjected to a 40 G deceleration. His parachute opened automatically and he came down approximately one-half mile off Laguna Beach. Fortunately he hit the water very close to a fishing boat crewed by a former U.S. Navy rescue expert.
The F-100 dived into the Pacific Ocean approximately ¼-mile (0.4 kilometers) offshore between Dana Point and Laguna Beach.
George Smith was unconscious for six days, and when he awoke he was blind in both eyes. After four surgeries and seven months in the hospital, he recovered from his supersonic ejection and returned to flight status.
North American Aviation, Inc. F-100A-20-NA Supre Sabre 53-1646. This fighter is from the same production block as the Super Sabre flown by George F. Smith, 53-1659, 26 February 1955. (Unattributed)
George F. Smith appears in this brief U.S. Air Force informational film:
The North American Aviation F-100 Super Sabre was designed as a supersonic day fighter. Initially intended as an improved F-86D and F-86E, it soon developed into an almost completely new airplane. The fuselage incorporated the “area rule,” a narrowing in the fuselage width at the wings to increase transonic performance, similar to the Convair F-102A.
The Super Sabre had a 49° 2′ sweep to the leading edges of the wings and horizontal stabilizer. The ailerons were placed inboard on the wings and there were no flaps, resulting in a high stall speed in landing configuration. The horizontal stabilizer was moved to the bottom of the fuselage to keep it out of the turbulence created by the wings at high angles of attack. The F-100A had longer wings and a distinctively shorter vertical fin than the YF-100A. The upper segment of the vertical fin was swept 49° 43′.
North American Aviation YF-100A Super Sabre 52-5754 lands on the dry lake at Edwards Air Force Base, California. (North American Aviation, Inc.)
There were two service test prototypes, designated YF-100A, followed by the production F-100A series. The first ten production aircraft (all of the Block 1 variants) were used in the flight testing program.
The F-100A Super Sabre was 47 feet, 1¼ inches (14.357 meters) long with a wingspan of 36 feet, 6 inches (11.125 meters). With the shorter vertical fin than the YF-100A, the initial F-100As had an overall height of 13 feet, 4 inches (4.064 meters), 11 inches (27.9 centimeters) less than the YF-100A.
The F-100A had an empty weight of 18,135 pounds (8,226 kilograms), and gross weight of 28,899 pounds (13,108 kilograms). Maximum takeoff weight was 35,600 pounds (16,148 kilograms). It had an internal fuel capacity of 755 gallons (2,858 liters) and could carry two 275 gallon (1,041 liter) external fuel tanks.
Following North American Aviation test pilot George Welch’s fatal accident, 12 October 1954, NACA designed a new vertical fin for the F-100A. It was taller but also had a longer chord. This resulted in a 10% increase in area. (NASA E-1573)
The early F-100As were powered by a Pratt & Whitney Turbo Wasp J57-P-7 afterburning turbojet engine. It was rated at 9,700 pounds of thrust (43.148 kilonewtons) for takeoff, and 14,800 pounds (65.834 kilonewtons) with afterburner. Later production aircraft used a J57-P-39 engine. The J57 was a two-spool axial flow turbojet which had a 16-stage compressor, and a 3-stage turbine. (Both had high- and low-pressure stages.) The engine was 15 feet, 3.5 inches (4.661 meters) long, 3 feet, 5.0 inches (1.041 meters) in diameter, and weighed 4,390 pounds (1,991 kilograms).
Test Pilot A. Scott Crossfield flew this F-100A-5-NA, 52-5778, in flight testing at the NACA High Speed Flight Station, October–December 1954. (NASA)
The Super Sabre was the first U.S. Air Force fighter capable of supersonic speed in level flight. It could reach 760 miles per hour (1,223 kilometers) at Sea Level. (Mach 1 is 761.1 miles per hour, 1,224.9 kilometers per hour, under standard atmospheric conditions.) Its maximum speed was 852 miles per hour (1,371 kilometers per hour) at 35,000 feet (10,668 meters)—Mach 1.29. The service ceiling was 44,900 feet (13,686 meters). Maximum range with external fuel was 1,489 miles (2,396 kilometers).
The F-100 was armed with four M-39 20 mm autocannons, capable of firing at a rate of 1,500 rounds per minute. The ammunition capacity of the F-100 was 200 rounds per gun.
North American Aviation built 199 F-100A Super Sabres at its Inglewood, California, plant before production shifted to the F-100C fighter bomber variant. Approximately 25% of all F-100As were lost in accidents.
This is the fifth production F-100A-1-NA Super Sabre, 52-5760, in flight southeast of San Bernardino, California. In this photograph, FW-760 has the taller vertical fin that was designed to improve the Super Sabre’s controllability. (U.S. Air Force)