Tag Archives: National Advisory Committee for Aeronautics

23 September 1943

North American P-51B Mustang in teh full-scale NACA wind tunnel, Langley, Virginia, 23 September 1945. (NASA)
North American Aviation P-51B Mustang fighter in the Full-Scale Tunnel, NACA Langley Memorial Aeronautical Laboratory, Hampton, Virginia, 23 September 1943. (NASA)
Drag test of North American Aviation P-51B-1-NA Mustang 43-12105 in the NACA Full-Scale Tunnel. (NASA)

9 August 1939

Bell XP-39 Airacobra 38-326 in the NACA Full Scale Wind Tunnel at Langley Field, Virginia, 9 August 1939. The man at the base of the supports shows scale. (NASA)

9 August 1939: After General Henry H. Arnold had ordered that the prototype Bell Aircraft Corporation XP-39 Airacobra be evaluated in the National Advisory Committee for Aeronautics (NACA) Full-Scale Tunnel at the Langley Memorial Aeronautics Laboratory, Langley Field, Virginia, it was flown there from Wright Field. It was hoped that aerodynamic improvements would allow the prototype to exceed 400 miles per hour (644 kilometers per hour).

NACA engineers placed the full-size airplane inside the large wind tunnel for testing. A number of specific areas for aerodynamic improvement were found. After those changes were made by Bell, the XP-39’s top speed had improved by 16%.

Bell XP-39 Airacobra 38-326 in the NACA Langley Memorial Aeronautical Laboratory Full-Scale Wind Tunnel, Langley Field, Virginia, 9 August 1939. The fuselage has had all protrusions removed. Right profile. (National Aeronautics and Space Administration NACA 18423)

The Bell XP-39 Airacobra was a single-place, single-engine prototype fighter with a low wing and retractable tricycle landing gears. The airplane was primarily built of aluminum, though control surfaces were fabric covered.

As originally built, the XP-39 was 28 feet, 8 inches (8.738 meters) long with a wingspan of 35 feet, 10 inches (10.922 meters). The prototype had an empty weight of 3,995 pounds (1,812 kilograms) and gross weight of 5,550 pounds (2,517 kilograms). Changes recommended by NACA resulted in a recontoured canopy, lengthened the airplane to 29 feet, 9 inches (9.068 meters) and reduced the wing span to 34 feet, 0 inches (10.362 meters). Its empty weight increased to 4,530 pounds (2,055 kilograms) and gross weight to 5,834 pounds (2,646 kilograms).

Bell XP-39 in the NACA wind tunnel at Langley Field. (NASA)
Bell XP-39 Airacobra 38-326 in the NACA wind tunnel at Langley Field. The man at the base of the supports shows scale. (NASA)

The XP-39 was unarmed, but it had been designed around the American Armament Corporation T9 37 mm autocannon, later designated Gun, Automatic, 37 mm, M4 (Aircraft). The cannon and ammunition were in the forward fuselage, above the engine driveshaft. The gun fired through the reduction gear box and propeller hub.

The XP-39 was originally powered by a liquid-cooled, turbosupercharged and supercharged 1,710.597-cubic-inch-displacement (28.032 liter) Allison Engineering Co. V-1710-E2 (V-1710-17), a single overhead cam (SOHC) 60° V-12 engine with a compression ratio of 6.65:1. The V-1710-17 had a Maximum Continuous Power rating of 1,000 horsepower at 2,600 r.p.m. at 25,000 feet (7,620 meters), and Takeoff/Military Power rating of 1,150 horsepower at 3,000 r.p.m. at 25,000 feet, burning 91 octane gasoline. The engine was installed in an unusual configuration behind the cockpit, with a two-piece drive shaft passing under the cockpit and turning the three-bladed Curtiss Electric constant-speed propeller through a remotely-mounted 1.8:1 gear reduction gear box. The V-1710-17 was 16 feet, 1.79 inches (4.922 meters) long, including the drive shaft and remote gear box. It was 2 feet, 11.45 inches (0.900 meters) high, 2 feet, 5.28 inches (0.744 meters) wide and weighed 1,350 pounds (612 kilograms).

Bell XP-39B prototype, s/n 38-326, at Bell Aircraft Co., Buffalo, New York

Army Air Corps strategy changed the role of the P-39 from a high-altitude interceptor to a low-altitude tactical strike fighter. The original turbocharged V-1710-17 was replaced with a V-1710-37 (V-1710-E5) engine. The turbosupercharger had been removed, which reduced the airplane’s power at altitudes above 15,000 feet (4,572 meters). The V-1710-37 had a maximum power of 1,090 horsepower at 3,000 r.p.m. at 13,300 feet (4,054 meters). With the NACA-recommended aerodynamic changes and the new engine, the prototype Airacobra was redesignated XP-39B.

A Bell P-39 Airacobra fires all of its guns at night. (U.S. Air Force)

© 2018, Bryan R. Swopes

27 June 1952

Jean L. Ziegler in the cockpit of Bell X-2 46-675 after landing on Rogers Dry Lake, at Edwards Air Force Base, California, 27 June 1952. (NASA)

27 June 1952: The Bell X-2 research rocketplane, with company test pilot Jean Leroy (“Skip”) Ziegler at the controls, was airdropped from a “mothership,” a Boeing B-50A-5-BO Superfortress, 46-011, over Edwards Air Force Base, California. This was the first flight of the X-2 Program, and was an unpowered glide flight for pilot familiarization.

On touch down, the nose wheel collapsed and the aircraft slid across the dry lake bed, but was not seriously damaged.

Two X-2 rocketplanes, serial numbers 46-674 and 46-675, were built by the Bell Aircraft Corporation, which has also built the X-1 series. The second X-2 was the first one to fly.

Bell Aircraft Corporation test pilot Jean Leroy (“Skip”) Ziegler standing next to the Bell X-2 rocket plane on Rogers Dry Lake, California, after the first glide flight, 27 June 1952. The nose wheel collapsed on landing. (NASM)

The X-2 was a joint project of the U.S. Air Force and NACA (the National Advisory Committee for Aeronautics, the predecessor of NASA). The rocketplane was designed and built by Bell Aircraft Corporation of Buffalo, New York, to explore supersonic flight at speeds beyond the capabilities of the earlier Bell X-1 and Douglas D-558-2 Skyrocket. In addition to the aerodynamic effects of speeds in the Mach 2.0–Mach 3.0 range, engineers knew that the high temperatures created by aerodynamic friction would be a problem, so the aircraft was built from Stainless Steel and K-Monel, a copper-nickel alloy.

The Bell Aircraft Corporation X-2 was 37 feet, 10 inches (11.532 meters) long with a wingspan of 32 feet, 3 inches (9.830 meters) and height of 11 feet, 10 inches (3.607 meters). Its empty weight was 12,375 pounds (5,613 kilograms) and loaded weight was 24,910 pounds (11,299 kilograms).

Bell X-2 46-675 on its transportation dolly at Edwards Air Force Base, california, 1952. (NASA)
Bell X-2 46-675 on its transportation dolly at the NACA High Speed Flight Station, Edwards Air Force Base, California, 1952. (NASA)

The X-2 was powered by a throttleable Curtiss-Wright XLR25-CW-1 rocket engine that produced 2,500–15,000 pounds of thrust burning alcohol and liquid oxygen. Rather than use its limited fuel capacity to take off and climb to altitude, the X-2 was dropped from a modified heavy bomber as had been the earlier rocketplanes. The launch altitude was 30,000 feet (9,144 meters). After the fuel was exhausted, the X-2 glided to a touchdown on Rogers Dry Lake at Edwards Air Force Base.

A four-engine Boeing B-50A Superfortress bomber, serial number 46-011, was modified as the ”mothership.” A second Superfortress, B-50D-95-BO 48-096, was also modified to carry the X-2, and was redesignated EB-50D. During the flight test program, the X-2 reached a maximum speed of Mach 3.196 (2,094 miles per hour, 3,370 kilometers per hour) and a maximum altitude of 126,200 feet (38,466 meters).

On 12 May 1953, less than one year after the first glide flight, Skip Ziegler was in the cockpit of 46-675 while it was being carried on a captive test flight aboard the B-50A Superfortress. An internal explosion destroyed the X-2 and killed Ziegler and another crewman aboard the mothership. The rocketplane fell into Lake Ontario and neither it nor Ziegler’s body were ever recovered. The Superfortress was able to land, but was so badly damaged that it never flew again.

Jean L. "Skip" Ziegler, with the Bell X-5 at Edwards Air Force Base, 1952. (LIFE Magazine via Jet Pilot Overseas.
Jean Leroy “Skip” Ziegler, with the Bell X-5 at Edwards Air Force Base, 1952. (LIFE Magazine via Jet Pilot Overseas.)

© 2018, Bryan R. Swopes

10 June 1969

North American Aviation, Inc., X-15A-1 56-6670 hypersonic research rocketplane on display at the National Air and Space Museum. (Photo by Eric Long, National Air and Space Museum, Smithsonian Institution)

10 June 1969: The U.S. Air Force donated the first North American Aviation X-15, serial number 56-6670, to the Smithsonian Institution for display at the National Air and Space Museum.

The North American Aviation, Inc., X-15A-1, 56-6670, being brought into the Arts and Industries building, June 1969. (Smithsonian Institution Archives SI-A-4145-23-A)
The North American Aviation, Inc., X-15A-1, 56-6670, being brought into the Arts and Industries building, June 1969. The wings and sections of the dorsal and ventral fins have been removed. (Smithsonian Institution Archives SI-A-4145-23-A)

The first of three X-15A hypersonic research rocketplanes built by North American for the Air Force and the National Advisory Committee (NACA, the predecessor of NASA), 56-6670 made the first glide flight and the first and last powered flights of the X-15 Program. It made a total of 82 of the 199 X-15 flights.

Scott Crossfield, North American’s Chief Engineering Test Pilot, made the first unpowered flight 8 June 1959 and the first powered flight, 17 September 1959. NASA Research Test Pilot William H. “Bill” Dana made the final X-15 flight on 24 October 1968.

North American Aviation, Inc., X-15A-1 56-6670 at the National Air and Space Museum, Washington, D.C. (D. Ramey Logan via Wikipedia)
The first North American Aviation, Inc., X-15A, 56-6670, at the National Air and Space Museum, Washington, D.C. Above and behind the X-15 is the Douglas D558-II Skyrocket that Scott Crossfield flew to Mach 2.005, 20 November 1953. (D. Ramey Logan via Wikipedia)

© 2018, Bryan R. Swopes

20 May 1941

NAA test pilot Robert C. Chilton stand on the wing of P-51B-10-NA 42-106435. (North American Aviation, Inc.)
North American Aviation test pilot Robert C. Chilton standing on the wing of P-51B-10-NA Mustang 42-106435. (North American Aviation, Inc.)

20 May 1941: North American Aviation, Inc., test pilot Robert Creed Chilton took the first XP-51 for its maiden flight at Mines Field, Los Angeles, California. The XP-51 was the fourth production Mustang Mk.I built for the Royal Air Force, (North American serial number 73-3101) and assigned registration number AG348.

The Mustang was reassigned to the U.S. Army Air Force, designated as XP-51, serial number 41-038, and sent to Wright Field, Dayton, Ohio, for evaluation.

North American Aviation Mustang Mk.I AG348 at Mines Field, California, 1941. North American Aviation, Inc., photograph 73-0-9. (Ray Wagner Collection/SDASM)
North American Aviation Mustang Mk.I AG348, Mines Field, California, 1941. North American Aviation, Inc., photograph 73-0-10. (Ray Wagner Collection/SDASM)
North American Aviation Mustang Mk.I AG348 at Mines Field, California, 1941. North American Aviation, Inc., photograph. (Ray Wagner Collection/SDASM)

Later, the XP-51 was extensively tested by the National Advisory Committee for Aeronautics (N.A.C.A.) at the Langley Memorial Aeronautical Laboratory, Langley Field, Hampton, Virginia.

Today, the restored XP-51 is in the collection of the E.A.A. AirVenture Museum at Oshkosh, Wisconsin.

North American Aviation XP-51 41-038 at the NACA Langley Memorial Aeronautical Laboratory. (NASA LMAL 27030)
North American Aviation XP-51 41-038 at the NACA Langley Memorial Aeronautical Laboratory. (NASA)

The Mustang Mk.I (NAA Model NA-73) was a single-place, single engine fighter primarily of metal construction with fabric control surfaces. It was 32 feet, 3 inches (9.830 meters) long with a wingspan of 37 feet, 5/16-inches (11.373 meters) and height of 12 feet, 2½ inches (3.721 meters). The airplane’s empty weight was 6,280 pounds (2,849 kilograms) and loaded weight was 8,400 pounds (3,810 kilograms).

North American Aviation XP-51 41-039 at NACA Langley. (NASA)
North American Aviation XP-51 41-039 at NACA Langley. Note the increased length of the carburetor intake. (NASA)

The Mustang was powered by a liquid-cooled, supercharged, 1,710.597-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710-F3R (V-1710-39) single overhead cam (SOHC) 60° V-12 engine with a compression ratio of 6.65:1. The -F3R had a Normal Power rating of 880 horsepower at 2,600 r.p.m., at Sea Level, and 1,000 horsepower at 2,600 r.p.m. at 11,000 feet (3,353 meters). It had a Takeoff and Military Power rating of 1,150 horsepower at 3,000 r.p.m., to 11,800 feet (3,597 meters). The engine turned a 10 foot, 9 inch (3.277 meter) diameter three-bladed Curtiss Electric constant-speed propeller through a 2.00:1 gear reduction. The V-1710-F3R was 7 feet, 4.38 inches (2.245 meters) long, 3 feet, 0.54 inches (0.928 meters) high, and 2 feet, 5.29 (0.744 meters) wide. It weighed 1,310 pounds (594 kilograms).

The Mustang Mk.I had a maximum speed of 382 miles per hour (615 kilometers per hour) at 13,700 feet (4,176 meters), the Allison’s critical altitude, and cruise speed of 300 miles per hour (483 kilometers per hour). The service ceiling was 30,800 feet (9,388 meters) and range was 750 miles (1,207 kilometers).

North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, right profile. (NASA LAML)
North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, right profile. (NASA)

The Mustang Mk.I was armed with four air-cooled Browning .303 Mk.II aircraft machine guns, two in each wing, and four Browning AN-M2 .50-caliber machine guns, with one in each wing and two mounted in the nose under the engine.

North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboroatory. (NASA LAML 27045)
North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, right three-quarter view. (NASA)

The Mk.I was 30 m.p.h. faster than its contemporary, the Curtiss P-40 Warhawk, though both used the same engine. Below 15,000 feet, the Mustang was also 30–35 m.p.h faster than a Supermarine Spitfire, which had a more powerful Roll-Royce Merlin V-12.

The XP-51 would be developed into the legendary P-51 Mustang. In production from 1941 to 1945, a total of 16,766 Mustangs of all variants were built.

North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, rear view. (NASA LMAL 27033)
North American Aviation XP-51 41-038 at NACA Langley Memorial Aeronautical Laboratory, rear view. (NASA)

Robert Creed Chilton was born 6 February 1912 at Eugene, Oregon, the third of five children of Leo Wesley Chilton, a physician, and Edith Gertrude Gray. He attended Boise High School in Idaho, graduating in 1931. Chilton participated in football, track and basketball, and also competed in the state music contest. After high school, Chilton attended the University of Oregon where he was a member of the Sigma Chi fraternity (ΣΧ). He was also a member of the Reserve Officers Training Corps (ROTC).

Bob Chilton enlisted as an Aviation Cadet in the U.S. Army Air Corps, 25 June 1937. He was trained as a fighter pilot at Randolph Field and Kelly Field in Texas, and was commissioned as a Second Lieutenant in 1938. Lieutenant Chilton was assigned to fly the Curtiss P-36 Hawk with the 79th Pursuit Squadron, 20th Pursuit Group, at Barksdale Field, Louisiana. Because of a medical condition, he was released from active duty, 1 April 1939.

At some time prior to 1940, Bob Chilton, married his first wife, Catherine. They lived in Santa Maria, California, where he worked as a pilot at the local airport.

In January 1941, Chilton went to work as a production test pilot for North American Aviation, Inc., Inglewood, California. After just a few months, he was assigned to the NA-73X.

Chilton married his second wife, Betty W. Shoemaker, 15 November 1951.

On 10 April 1952, Bob Chilton returned to active duty with the U.S. Air Force, with the rank of lieutenant colonel. He served as Chief of the Republic F-84 and F-105 Weapons System Project Office, Air Material Command, at Wright-Patterson Air Force Base, Dayton, Ohio, until 9 March 1957.

From 1958, Chilton was a vice president for Horkey-Moore Associates, an engineering research and development company in Torrance, California, founded by former North American aerodynamacist Edward J. Horkey. In 1961, he followed Horkey to the Space Equipment Corporation, parent company of Thompson Industries and Kerr Products, also located in Torrance. Chilton served as corporate secretary and contracts administrator.

Chilton married his third wife, Wilhelmina E. Redding (Billie E. Johnson) at Los Angeles, 26 July 1964. They divorced in 1972.

In 1965, Bob Chilton returned to North American Aviation as a flight test program manager. He retired in 1977.

Robert Creed Chilton died at Eugene, Oregon, 31 December 1994, at the age of 82 years.

North American Aviation XP-51 at Wright Field. (Charles M. Daniels Collection, San Diego Air & Space Museum Archives, Catalog #: 15_002838)

© 2018, Bryan R. Swopes