Tag Archives: Helicopter

17 May 1942

Sikorsky XR-4 41-18874 at Wright Field, Ohio, 17 May 1942. (Sikorsky Historical Archives)
Vought-Sikorsky XR-4 41-18874 at Wright Field, Ohio, 17 May 1942. (Sikorsky Historical Archives)
The Sikorsky XR-4 41-18874 at Wright Field, 17 May 1942. Left to right: E. Walsh, A. Planefisch, Igor Sikorsky, Orville Wright, R. Alex, Les Morris, B. Labensky. (Sikorsky Archives)

17 May 1942: After a 761 mile (1,224.7 kilometer) flight over five days, test pilot Charles Lester (“Les”) Morris and Igor Sikorsky arrived at Wright Field, Dayton, Ohio, to deliver the U.S. Army’s first helicopter, the Vought-Sikorsky XR-4. Morris hovered directly up to the base administration building and landed there. He and Sikorsky were greeted by a large group of people which included Lieutenant Colonel Hollingsworth Franklin (“Frank”) Gregory, the Army’s designated rotorcraft expert, and pioneer aviator Orville Wright.

From the Sikorsky factory at Stratford, Connecticut, to Wright Field, Ohio, was 761 miles (1,224.7 kilometers), direct. Because of the XR-4’s low speed and short range (weight limitations restricted the quantity of gasoline it could carry) the distance was covered in sixteen separate flights with a total flight time of 16 hours, 10 minutes. The longest single flight lasted 1 hour, 50 minutes, a new world’s record for helicopter flight endurance. Igor Sikorsky joined Les Morris for the final leg of the flight.

Sikorsky test pilot Charles Lester (“Les”) Morris in the cockpit of an earlier version of the Vought-Sikorsky VS-300. (Hans Groenhoff Photographic Collection, Smithsonian Institution National Air and Space Museum NASM-HGC-1408)

The Vought-Sikorsky VS-316A (which was designated XR-4 by the U.S. Army Air Corps and assigned serial number 41-18874), established the single main rotor/anti-torque tail rotor configuration. It was a two-place helicopter with side-by-side seating and dual flight controls. The fabric-covered three-blade main rotor was 38 feet (11.582 meters) in diameter and turned counter-clockwise as seen from above. (The advancing blade is on the helicopter’s right). The three-blade tail rotor was mounted to the right of the tail boom in a tractor configuration, and rotated clockwise when seen from the helicopter’s left side. (The advancing blade was below the axis of rotation.)

The XR-4 was 33 feet, 11.5 inches (10.351 meters) long and 12 feet, 5 inches (3.785 meters) high. It weighed 2,010 pounds (911.7 kilograms) empty and the maximum gross weight was 2,540 pounds (1,152.1 kilograms).

The VS-316A had originally been powered by a 499.8-cubic-inch-displacement (8.19 liter) air-cooled Warner Aircraft Corporation Scarab SS-50 (R-500-1) seven-cylinder radial engine, rated at 145 horsepower at 2,050 r.p.m. In the XR-4 configuration, the engine was upgraded to an air-cooled, direct-drive 555.298-cubic-inch-displacement (9.100 liter) Warner Super Scarab SS185 (R-550-3) seven-cylinder radial engine with a compression ration of 6.20:1. The R-550-3 was rated at 185 horsepower at 2,175 r.p.m. at Sea Level, and 200 horsepower at 2,475 r.p.m (five minute limit) for takeoff. The engine was placed backwards in the aircraft with the propeller shaft driving a short driveshaft through a clutch to a 90° gear box and the transmission. The R-550-3 weighed 344 pounds (156 kilograms).

The XR-4 was redesignated XR-4C. This would be the world’s first production helicopter. It is at the Steven F. Udvar-Hazy Center of the Smithsonian National Air and Space Museum.

Vought-Sikorsky XR-4C 41-18874 at the National Air and Space Museum. (NASM)

© 2019, Bryan R. Swopes

16 May 1977

Sikorsky S-61L N619PA
New York Airways’ Sikorsky S-61L, N916PA. (Photograph by Stefan Sjögren, used with permission.)

16 May 1977: At approximately 5:32 p.m. Eastern Standard Time, New York Airways Flight 971, a Sikorsky S-61L helicopter, landed at the Pan Am Building rooftop heliport (JPB) in New York City. Flight 971 had originated at John F. Kennedy International Airport (JFK) and carried 20 passengers and a crew of three. The helipad was 855.23 feet (260.67 meters) above Sea Level.

In the cockpit’s right seat was Captain Lee G. Richmond. Captain Richmond had 11,721 total flight hours with over 9,000 in helicopters and approximately 2,200 in the Sikorsky S-61. He had worked for New York Airways since 1964. The co-pilot was First Officer John F. Flanagan had worked for NYA for about five weeks. He had 1,768.4 flight hours with 1,339.2 hours in helicopters. Both pilots had flown 3 hours, 33 minutes on 16 May. Flight Attendant Lammie Chevalier had been employed by NYA for four years.

A Sikorsky S-61L hovers over the Pan Am Building heliport. (Unattributed)
A New York Airways Sikorsky S-61L hovers over the Pan Am Building heliport. (Pan Am)

Captain Richmond taxied the S-61 into position on the 131-foot × 131-foot (39.9 × 39.9 meters) concrete helipad. While parked at the gate, Richmond kept the rotors turning at 100%, keeping the cyclic control centered and the collective full down (negative pitch). The Automatic Flight Control System (AFCS) was engaged. Flanagan kept his left knee against the collective pitch lever to ensure that it remained full down. Flight Attendant Chevalier stood inside the passenger cabin, supervising departing and boarding passengers.

The return flight to JFK was designated Flight 972.

Aerial photo of the wreck of Flight 972 atop the Pan Am Building, 16 May 1977. (Neal Boenzi/The New York Times)
Aerial photo of the wreck of Flight 972 atop the Pan Am Building, 16 May 1977. (Neal Boenzi/The New York Times)

2 minutes, 21 seconds after touch down, at approximately 5:35 p.m., the right main landing gear of the helicopter failed and the S-61 rolled over to the right. All main rotor blades struck the concrete helipad. Four passengers who were waiting to board were struck by the blades and killed. One of the blades, 28 feet, 10 inches (8.787 meters) long and weighing 209.3 pounds (94.9 kilograms) flew out over the building’s railing and fell alongside the building before crashing through an office window on the 36th floor. The main rotor blade broke into two segments, one of which fell to the street below, striking a pedestrian and killing him. Additional pieces of the main rotor blades were found up to four blocks north of the Pan Am Building.

Wreck of S-61L N619PA at the Pan Am Building rooftop heliport, 16 May 1977. (Unattributed)
Wreck of S-61L N619PA at the Pan Am Building rooftop heliport, 16 May 1977. The Chrysler Building is in the background. (Unattributed)

The helicopter assigned to Flight 971/972 was a Sikorsky S-61L, s/n 61427, registered N619PA. At the time of the accident, the helicopter had a total of 6,913:15 hours on the airframe. Just 7 hours, 22 minutes had elapsed since the last major inspection.

The National Transportation Safety Board (NTSB) investigation determined that the probable cause of the accident was: “. . . the fatigue failure of the upper right forward fitting of the right main landing gear tube assembly. Fatigue originated from a small surface pit of undetermined source. All fatalities were caused by the operating rotor blades as a result of the collapse of the landing gear.”

The NTSB determined that the flight crew had performed correctly, and that the aircraft was properly certified, maintained and operated. The Board speculated that the four boarding passengers would have been killed by the helicopter rolling over, even if the engines had been shut down and rotors stopped.

Sikorsky S-61L N619PA lies on its right side at the Pam Am Building heliport, May 1977. The Empire State Building is in the background. (Unattributed)
Sikorsky S-61L N619PA lies on its right side at the Pam Am Building heliport, May 1977. The Empire State Building is in the background. (Unattributed)

A similar accident had occurred when a Los Angeles Helicopters Sikorsky S-61L suffered a fatigue fracture of its right landing gear and rolled over at Los Angeles International Airport (LAX) in 1963. This accident had resulted in a change in the material used to manufacture the parts.

The Sikorsky S-61L was a civil variant of the United States Navy HSS-2 Sea King, and was the first helicopter specifically built for airline use. The prototype, N300Y, first flew 2 November 1961. It is a large twin-engine helicopter with a single main rotor/tail rotor configuration. Although HSS-2 fuselage is designed to allow landing on water, the S-61L is not amphibious, having standard fixed landing gear rather than the sponsons of the HSS-2 (and civil S-61N). The S-61L fuselage is 4 feet, 2 inches (1.270 meters) longer than that of the HSS-2. The S-61L is 72 feet, 7 inches (22.123 meters) long and 16 feet, 10 inches (5.131 meters) high, with rotors turning.

The main rotor has five blades and a diameter of 62 feet (18.898 meters). Each blade has a chord of 1 foot, 6.25 inches (0.464 meters). The tail rotor also has five blades and a diameter of 10 feet, 4 inches (3.149 meters). They each have a chord of 7–11/32 inches (0.187 meters). At 100% r.p.m., the main rotor turns 203 r.p.m. and the tail rotor, 1,244 r.p.m. The main rotor turns counter-clockwise, as seen from above. (The advancing blade is on the helicopter’s right side.) The tail rotor turns clockwise, as seen from the left side. (The advancing blade is below the axis of rotation.)

Sikorsky S-61L Sea King N617PA, sister ship of the accident helicopter. (Wikipedia)

N619PA was powered by two General Electric CT58-140-2 turboshaft engines, each of which had maximum power rating of 1,400 shaft horsepower for takeoff and 1,500 SHP for 2½ minutes. The main transmission was rated for 2,300 horsepower, maximum.

The S-61 has a cruise speed of  166 miles per hour (267 kilometers per hour). The service ceiling is 12,500 feet (3,810 meters). The maximum takeoff weight is 20,500 pounds (9,298.6 kilograms).

Between 1958 and 1980, Sikorsky built 794 S-61 series helicopters. 13 were S-61Ls. As of May 2017, two remained in service.

© 2019, Bryan R. Swopes

6–7 May 1943

Colonel Frank Gregory lands the Vought-Sikorsky XR-4, 41-18864, aboard SS Bunker Hill, 6-7 May 1943. (Sikorsky Historical Archives)
Colonel Frank Gregory lands the Vought-Sikorsky XR-4, 41-18874, aboard SS Bunker Hill, 6-7 May 1943. (Sikorsky Historical Archives)

6–7 May 1943: To determine the feasibility of operating helicopters from the decks of merchant ships for antisubmarine patrols, Colonel Hollingsworth Franklin (“Frank”) Gregory, U.S. Army Air Corps, made 23 landings and takeoffs from the tanker SS Bunker Hill in Long Island Sound, flying the Army’s Vought-Sikorsky XR-4, 41-18874.

According to an official U.S. Coast Guard history of the tests,

The tanker BUNKER HILL was made available for the tests and a deck 78 feet [23.8 meters] long, with obstructions at both ends, was put in place. An eight foot[2.4 meters] bullseye in the center of a square was painted in the middle of the platform. Colonel Frank Gregory arrived on 6 May to fly the Army XR-4 provided for the tests. The entire helicopter project rested on the XR-4’s ability to land on a ship. Gregory was concerned at first. His “shipboard” experience was limited to a 20 foot [6.1 meters] platform at Wright Field. He immediately set about getting “additional experience.” Gregory noted with reference to his first attempt:

Igor Sikorsky and Colonel Frank Gregory with the Vought-Sikorsky XR-4. (Sikorsky Historical Archives)
Igor Sikorsky and Colonel Frank Gregory with the Vought-Sikorsky XR-4. (Sikorsky Historical Archives)

“The space on the deck looked even smaller—it didn’t look like the helicopter would fit. The cabin superstructure towered up like a two story building, and the people on it had that “it can’t be done” look on their faces—yet the big white bullseye stuck out like a target—the XR-4 came true to the white marker as though being pulled by a powerful magnet, and a minute later the floats touched the deck.”

He continued to practice landings and takeoffs that afternoon with the ship at anchor, then underway at five, seven and one-half, ten and fifteen knots. As the speed increased the landings became more difficult because of increased turbulence over the superstructure but the helicopter proved to be completely controllable.

The next morning guests were ferried out to the BUNKER HILL . . . A total of 97 names were on the guest list. Gregory put on an impressive and flawless performance as the ship cruised at various speeds up to 15 knots and on various headings with relation to the wind which was blowing at 12 knots. . . .

—”The Helicopter as an Anti-Submarine Weapon,” A History of Coast Guard Aviation, The Growth Years (1939–1956).

SS Bunker Hill, a Type T2 tanker, with a tugboat alongside. (Unattributed)
SS Bunker Hill, a Type T-2 tanker, with a tugboat alongside. (Unattributed)

SS Bunker Hill was a 10,590 gross ton Type T-2 tanker owned by the Keystone Tankship Corporation. It was  504 feet (153.6 meters) long, with a beam of 68.2 feet (20.8 meters) and drawing 39.2 feet (12 meters). Its engine developed 7,000 horsepower.

On 6 March 1964, Bunker Hill was enroute from Tacoma to Anacortes, Washington when it suffered a vapor explosion in the Number 9 cargo tank which broke the ship in half. It sank in Rosario Strait in less than one hour. Five members of the crew of thirty-one, including the captain, chief mate, third mate, quartermaster and steward, were lost.

The Vought-Sikorsky VS-316A (which was designated XR-4 by the U.S. Army Air Corps and assigned serial number 41-18874), established the single main rotor/anti-torque tail rotor configuration. It was a two-place helicopter with side-by-side seating and dual flight controls. The fabric-covered three-blade main rotor was 38 feet (11.582 meters) in diameter and turned counter-clockwise as seen from above. (The advancing blade is on the helicopter’s right). The three-blade tail rotor was mounted to the right of the tail boom in a tractor configuration, and rotated clockwise when seen from the helicopter’s left side. (The advancing blade was below the axis of rotation.)

The XR-4 was 33 feet, 11.5 inches (10.351 meters) long and 12 feet, 5 inches (3.785 meters) high. It weighed 2,010 pounds (911.7 kilograms) empty and the maximum gross weight was 2,540 pounds (1,152.1 kilograms).

The VS-316A had originally been powered by a 499.8-cubic-inch-displacement (8.19 liter) air-cooled Warner Scarab SS-50 (R-500-1) seven-cylinder radial engine, rated at 145 horsepower at 2,050 r.p.m. In the XR-4 configuration, the engine was upgraded to an air-cooled, direct-drive 555.298-cubic-inch-displacement (9.100 liter) Warner Super Scarab SS185 (R-550-3) seven-cylinder radial engine with a compression ration of 6.20:1. The R-550-3 was rated at 185 horsepower at 2,175 r.p.m. at Sea Level, and 200 horsepower at 2,475 r.p.m (five minute limit) for takeoff. The engine was placed backwards in the aircraft with the propeller shaft driving a short driveshaft through a clutch to a 90° gear box and the transmission. The R-550-3 weighed 344 pounds (156 kilograms).

The XR-4 was redesignated XR-4C. This would be the world’s first production helicopter. It is at the Steven F. Udvar-Hazy Center of the Smithsonian National Air and Space Museum.

Vought-Sikorsky XR-4 41-18874 during shipboard testing, June 1943. (Sikorsky Historical Archives)
Vought-Sikorsky XR-4 41-18874 during shipboard testing, June 1943. (Sikorsky Historical Archives)

© 2019, Bryan R. Swopes

6 May 1941

Igor Sikorsky with his VS-300A, Stratford, Connecticut, 6 May 1941. (Sikorsky Archives)

6 May 1941: At Stratford, Connecticut, Igor Sikorsky piloted his Vought-Sikorsky VS-300 helicopter to a new world’s record for endurance. He flew for 1 hour, 32 minutes, 26 seconds. ¹ The previous record—1 hour, 20 minutes, 49 seconds—had been set by Ewald Rohlfs with the Focke-Wulf Fw 61 tandem-rotor helicopter, 25 June 1937. ²

During its development, the VS-300 went through at least 18 changes in its rotor configuration. This photograph, taken after the record-setting flight, shows an intermediate version, with one main rotor for lift and three auxiliary rotors for anti-torque and directional control.

Igor Ivanovich Sikorsky 1888–1970. Sikorsky Archives)

In the final configuration, Sikorsky arrived at what we now recognize as a helicopter, with the main rotor providing lift, thrust and roll control through variable collective and cyclic pitch, and a single tail rotor for anti-torque and yaw control.

The VS-300 had a welded tubular steel airframe and used a 28-foot (5.34 meters) diameter, fully-articulated, three-bladed main rotor, which turned clockwise (as seen from above) at 260 r.p.m. (The advancing blade was on the left. This would later be reversed.) The main rotor had collective pitch control for vertical control, but cyclic pitch (Sikorsky referred to this as “sectional control”) for directional control would not be developed for another several months.

The tail “propellers” (what we now consider to be rotors—one vertical and two horizontal) each had two blades with a diameter of 7 feet, 8 inches (2.337 meters) and turned approximately 1,300 r.p.m. The vertical rotor provided “torque compensation” (anti-torque) and the blade pitch was fully reversible. The horizontal rotors were mounted on 10-foot (3.048 meters) outriggers at the aft end of the fuselage. For lateral control, the pitch on one rotor was increased and the other decreased. For longitudinal control, the pitch of both rotors was increased or decreased together.

The VS-300 was originally equipped with an air-cooled, normally-aspirated 144.489-cubic-inch-displacement (2.368 liter) Lycoming O-145C-3 four-cylinder horizontally-opposed engine which was rated at 75 horsepower at 3,100 r.p.m. According to Mr. Sikorsky, “early in 1941,” the Lycoming engine was replaced by an air-cooled, normally-aspirated 198.608 cubic inch (3.255 liter) Franklin 4AC-199-E, a four-cylinder horizontally-opposed overhead valve (OHV) direct-drive engine with a compression ratio of 7:1, rated at 90 horsepower at 2,500 r.p.m. It is not known if this change was made prior to 6 May.

¹ During World War II, only a very few ballooning and gliding world records were certified by the Fédération Aéronautique Internationale. Although Sikorsky’s flight duration exceeded that of Rohlfs, it is not listed as an official world record.

² FAI Record File Number 13147

© 2019, Bryan R. Swopes

4 May 1924

Étienne Edmond Oehmichen, France, 1924
Étienne Edmond Oehmichen, France, 1924

4 May 1924: At 7:30 a.m., Étienne Edmond Oehmichen (1884–1955), an engineer for Société Anonyme des Automobiles et Cycles Peugeot, flew his four-rotor L’Hélicoptère Nº2 around a triangular closed circuit of approximately 1 kilometer (0.62 mile) at Valentigney, France. The flight took 7 minutes, 40 seconds. It was observed by the public, members of the press and officials of the Service Technique de l’ Aéronautique (S.T.Aé, the French air ministry). For his accomplishment, Oehmichen was awarded a prize of ₣90,000 by the government of France.

FLIGHT reported:

A Fresh Helicopter Record

     M. Oemichen has been continuing his experiments at Valentigny with his helicopter, and on Sunday, May 4, established a record for helicopters by accomplished a flight of more than one kilometre—1,100 yards—in a closed circuit. The flight lasted 7 mins. 40 secs. and during most of the time the machine maintained a height of about 3 feet, but sometimes rose to 10 feet. The flight was officially observed by a representative of the Department of Military Aeronautics. By this performance M. Oemichen wins an award of 90,000 francs given by the French Government.

FLIGHT, The Aircraft Engineer & Airships, No. 802 (No. 19, Vol. XVI.) May 8, 1924, Page 267, Column 1

Helicopter No. 2
Oehmichen’s helicopter. (Collection Phillipe Boulay)

The previous month, Oehmichen had set two FAI world rotorcraft records for distance in a straight line. On 14 April 1924, he flew 360 meters (1,181 feet)¹, and on 17 April, 525 meters (1,722 feet).²

On 14 September 1924, he would set two records for altitude, 1 meter (3.28 feet) with a 100 kilogram (220 pounds) and a 200 kilogram (441 pounds) payload.³

L'hélicoptère No. 2
One of the configurations of Oemichen’s helicopter.

Oehmichen’s helicopter (also referred to by some sources as the Peugeot Nº2) was a cross-shaped structure built of metal tubing. Lift was generated by four two-bladed, counter-rotating, main rotors. Two rotors had a diameter of 6.5 meters (21 feet, 4 inches), and the other two, 7.5 meters (24 feet, 7 inches). They all turned at 145 r.p.m. Blade pitch was controlled by warping.

The helicopter had another five rotors positioned in the horizontal plane. Three had a diameter of 1.45 meters (4 feet, 9 inches), and two, 1.55 meters (5 feet, 1 inch). These had reversible pitch were used to provide lateral control. Two variable-pitch pusher propellers with a diameter of 1.40 meters (4 feet, 7 inches) were positioned on each side of the lateral structure, and were driven by belts. The helicopter was steered by another small rotor at the front.

“Ensemble perspectif sçhématique des sustentateurs, propulseurs et évoluers de l’hélicoptère Oemichen-Peogeot Nº 2.”  (L’Aéronautique, 6me Année. Nº 61, Juin 1924, at Page 138)

With the helicopter having an operating weight of approximately 1,000 kilograms (2,205 pounds), the rotors had a load factor of 33 kilograms per square meter (6.8 pounds per square foot).

L’hélicoptère Nº2 was powered by a single Société des Moteurs Gnome et Rhône Type R nine-cylinder rotary engine placed vertically near the center of the structure.

The Le Rhône Type R, introduced in 1917, was an air-cooled, normally-aspirated, 15.892 liter (969.786 cubic inches) nine-cylinder overhead valve rotary engine with two valves per cylinder. The Type R produced 170 cheval vapeur (167.7 horsepower) at 1,360 r.p.m. The engine was 0.990 meters (3 feet, 2.9 inches) long, 0.995 meters (3 feet, 3.2 inches) in diameter, and weighed 166 kilograms (366 pounds).

Étienne Oehmichen's Helicopter No. 2
Étienne Oehmichen’s Helicopter No. 2, 4 May 1924.

¹ FAI Record File Number 13093

² FAI Record File Number 13095

³ FAI Record Files 13091 (100 kilograms) and 13092 (200 kilograms)

© 2019, Bryan R. Swopes