Tag Archives: Fighter

20 September 1918

Lieutenant (j.g.) David S. Ingalls, USN, France, 1918. (U.S. Navy)
Lieutenant (j.g.) David S. Ingalls, USN, France, 1918. (U.S. Navy)

20 September 1918: While assigned to No. 213 Squadron, Royal Air Force, Lieutenant (junior grade) David Sinton Ingalls, United States Navy, shot down a Fokker D.VII reconnaissance airplane near Vlissegham, Belgium, while flying a Sopwith Camel, serial number D8177. This was Ingalls’ fifth confirmed aerial victory, making him the U.S. Navy’s only fighter ace of World War I.

Lieutenant Ingalls was awarded the Navy Cross for his actions of 15 September 1918, when “he led a flight of five machines on a low bombing raid of an enemy aerodrome. On the homeward journey he shot down a two-seater enemy aeroplane in flames. He further participated in two other low bombing raids and upon still another occasion shot down an enemy kite balloon in flames near Ostend.”  He was also awarded the Distinguished Service Medal for exceptionally meritorious service. The Royal Air Force awarded him its Distinguished Flying Cross for the 15 September mission against Uytkerke Aerodrome, and he was Mentioned in Dispatches. France appointed him Chevalier de la légion d’honneur.

Sopwith Camel F.1. (Royal Air Force)

The Sopwith Camel F.1 was a British single-place, single-engine biplane fighter, produced by the Sopwith Aviation Co., Ltd., Canbury Park Road, Kingston-on-Thames. The airplane was constructed of a wooden framework, with the forward fuselage being covered with aluminum panels and plywood, while the aft fuselage, wings and tail surfaces were covered with fabric.

The length of the Camel F.I varied from 18 feet, 6 inches (5.639 meters) to 19 feet, 0 inches (5.791 meters), depending on which engine was installed. Both upper and lower wings had a span of 28 feet, 0 inches (8.534 meters) and chord of 4 feet, 6 inches (1.372 meters). They were separated vertically by 5 feet (1.524 meters) at the fuselage. The upper wing had 0° dihedral, while the lower wing had 5° dihedral and was staggered 1 foot, 6 inches (0.457 meters) behind the upper wing. The single-bay wings were braced with airfoil-shaped streamline wires. The overall height of the Camel also varied with the engine, from 8 feet, 6 inches (2.591 meters) to 8 feet, 9 inches (2.667 meters).

The heaviest Camel F.I variant used the Le Rhône 180 h.p. engine. It had an empty weight of 1,048 pounds (475 kilograms). Its gross weight of 1,567 pounds (711 kilograms). The lightest was equipped with the Gnôme Monosoupape 100 horsepower engine, with weights of 882 pounds (400 kilograms) and 1,387 pounds (629 kilograms), respectively.

Front view of a Sopwith Camel F.I
Front view of a Sopwith Camel F.I

The first Camel was powered by an air-cooled 15.268 liter (931.72 cubic inches) Société Clerget-Blin et Cie Clerget Type 9 nine-cylinder rotary engine which produced 110 horsepower at 1,200 r.p.m. and drove a wooden two-bladed propeller. Eight different rotary engines ¹ from four manufacturers, ranging from 100 to 180 horsepower, were used in the type.

The best performance came with the Bentley B.R.1 engine (5.7:1 compression ratio). This variant had a maximum speed of 121 miles per hour (195 kilometers per hour) at 10,000 feet (3,048 meters), and 114.5 miles per hour (184 kilometers per hour) at 15,000 feet (4,572 meters). It could climb to 6,500 feet (1,981 meters) in 4 minutes, 35 seconds; to 10,000 feet (3,048 meters) in 8 minutes, 10 seconds; and 15,000 feet (4,572 meters) in 15 minutes, 55 seconds. It had a service ceiling of 22,000 feet (6,706 meters). Two other Camel variants could reach 24,000 feet (7,315 meters).

Sopwith Camel F.1 N6254, right profile. (NASA)
Lt. W.O. Bentley R.N.A.S.
Lieutenant Walter Owen Bentley, R.N.A.S.

The Bentley B.R.1 rotary engine was designed by Lieutenant Walter Owen Bentley, Royal Naval Air Service (later, Captain, Royal Air Force), based on the Clerget Type 9, but with major improvements. It used aluminum cylinders shrunk on to steel liners, with aluminum pistons. The Bentley B.R.1 (originally named the Admiralty Rotary, A.R.1, as it was intended for use by the Royal Navy) was an air-cooled, normally-aspirated 17.304 liter (1,055.9 cubic inches) nine-cylinder rotary engine with a compression ratio of 5.7:1. It was rated at 150 horsepower at 1,250 r.p.m. The B.R.1 was 1.110 meters (3 feet, 7.7 inches) long, 1.070 meters (feet, 6.125 inches) in diameter and weighted 184 kilograms (406 pounds.) The engine was manufactured by Humber, Ltd., Coventry, England.

For his work developing this engine, Captain Bentley was appointed a Member of the Military Division of the Most Excellent Order of the British Empire (M.B.E.) in the New Years Honours List, 1 January 1919. He would later found Bentley Motors, Ltd.

Sopwith Camel F.1 FG394, left rear quarter. © IWM (Q 63822)
Sopwith Camel F.1 F6394, left rear quarter. © IWM (Q 63822)

The Camel was armed with two fixed, forward-firing .303 Vickers machine guns, synchronized to fire forward through the propeller. These guns were modified for air cooling. Some night fighter variants substituted Lewis machine guns mounted above the upper wing for the Vickers guns. Four 25 pound (11.3 kilogram) bombs could be carried on racks under the fuselage.

The instruments and armament of a Sopwith Camel from No. 4 Squadron, AFC. (Australian War Memorial)
The instruments and armament of a Sopwith Camel from No. 4 Squadron, AFC. (Australian War Memorial)

The Sopwith Camel was a difficult airplane to fly. Most of its weight was concentrated far forward, making it unstable, but, at the same time making the fighter highly maneuverable. The rotary engine, with so much of its mass in rotation, caused a torque effect that rolled the airplane to the right to a much greater degree than in airplanes equipped with radial or V-type engines. A skilled pilot could use this to his advantage, but many Camels ended upside down while taking off.

Twelve manufacturers ² produced 5,490 Sopwith Camels between 1916 and 1920. By the end of World War I, it was becoming outclassed by newer aircraft, however it was the single most successful fighter of the war, shooting down 1,294 enemy aircraft. One single fighter, flown by Major William Barker, shot down 46 enemy aircraft, more than any other fighter in history.

It is believed that only seven Sopwith Camels still exist.

Lieutenant David Sinton Ingalls, Naval Reserve Flying Corps, circa 1919. (U.S. Naval Institute)

David Sinton Ingalls was born 28 January 1899 at Cleveland, Ohio. He was the son of Albert Stimson Ingalls, a vice president of the New York Central Railroad, and Jane Ellison Taft Ingalls, niece of President William Howard Taft. He  was educated at the University School, a private school for boys in Cleveland. He entered Yale University at New Haven, Connecticut, in 1916. Ingalls was a member of The First Yale Unit, which would become the U.S. Navy’s first aviation unit.

Shortly after the United States entered World War I, David Sinton Ingalls enlisted as a Machinist’s Mate 1st Class, United States Naval Reserve Force, at New London, Connecticut, 26 March 1917. He was sent to the Naval Aviation Detachment at West Palm Beach, Florida, for initial flight training, and then to the Naval Aviation Detachment, Huntington, New York. MM1c Ingalls was discharged 1 September 1917 and appointed an Ensign, 4 September 1917. He was Naval Aviator Number 85.

Ensign Ingalls was sent to France for duty, 12 September 1917. In December 1917, he was detached and sent to the Royal Flying Corps air station at Turnberry, South Ayrshire, Scotland, for training in aerial gunnery. He then underwent squadron formation training at nearby Ayr, Scotland. Following training, Ensign Ingalls was assigned to the Naval Air Detachment at Paris, France, 12 March 1918. On 23 March 1918, Ingalls was promoted to the rank of Lieutenant (junior grade).

On 21 May 1918, Lieutenant (j.g.) Ingalls was assigned to the U.S. Army Bombing School at Clermont-Ferrand, France. On 27 June 1918, Lieutenant (j.g.) Ingalls was assigned to the Naval Air Station Dunkerque. He flew combat missions with No. 213 Squadron, and No. 218 Squadron, both of the Royal Air Force. (While flying with the 218th, he was reported to have shot down an observation balloon and a biplane. The records were lost and these claims are considered unconfirmed.)

While flying with No. 213 Squadron, on 11 August 1918, Lieutenant (j.g.) Ingalls shot down an Albatros C northeast of Diksmuide, West Flanders—his first confirmed victory. His second confirmed victory was a two-place Luftverkehrsgesellschaft m.b.H. (L.V.G.) biplane south of Zevecote, Belgium, on 21 August. He shot down a Rumpler C over Ostend, 15 September. His fourth confirmed victory took place on 18 September when he destroyed an observation balloon at La Barrière. The Fokker D.VII that he shot down on 20 September was his fifth. He shot down his sixth,a Rumpler, on 24 September 1918, over Saint-Pierre-Cappelle, Belgium. Other than the Fokker D.VII, Ingalls shared credit with other pilots for the shoot-downs.

Lieutenant (j.g.) Ingalls flew his final combat mission, his sixty-third, on 3 October 1918.

On 24 September 1919, he was given the provisional rank of Lieutenant, Naval Reserve Flying Corps, with date of rank, 1 April 1919. He was released from active duty 23 December 1919.

Returning to Yale University, he graduated in 1920 with a Bachelor of Arts degree, and in 1923, received a Doctor of Laws (LL.D.) degree from Harvard University, Cambridge, Massachusetts. He practiced law for several years before being elected to the state legislature of Ohio in 1926. Later, he ran for governor and United States senator.

David Sinton Ingalls married Miss Louise Hale Harkness at Locust Valley, New York, 27 June 1922. They would have five children: Edith, Jane, Anne, Louise, and David.

Flag of the Assistant Secretary of the Navy for Aeronautics

Ingalls was appointed Assistant Secretary of the Navy for Aeronautics by President Herbert Hoover, serving from 16 March 1929 until 1 June 1932, reporting to Secretary of the Navy Charles Francis Adams III.

Secretary Ingalls’ photograph was featured on the cover of TIME Magazine, 2 March 1931.

Assistant Secretary of the Navy for Aeronautics David Sinton Ingalls was featured on the cover of TIME Magazine, 2 March 1931. Photograph by Underwood & Underwood. (TIME Magazine)

On 24 December 1931, Ingalls was appointed a Lieutenant Commander, United States Naval Reserve.

Going to work in the business sector, Ingalls became vice president and general manager of Pan American Air Ferries, a commercial transport service from the United States to Egypt, and which also transported newly-built military aircraft from the United States via South America, across the South Atlantic Ocean to Africa, and then on to the Middle East.

Lieutenant Commander Ingalls was promoted to Commander, U.S.N.R., 1 July 1941, and following the United States entry into World War II, he was recalled to active duty, 23 November 1942. Commander Ingalls served as Assistant Operations Officer on the staff of the Commander, Naval Air Forces, Pacific, (COMNAVAIRPAC), for which he was awarded the Legion of Merit. He was promoted to Captain, 10 June 1943. He then served as chief of staff to the Commander Aircraft South Pacific Force, Admiral Aubrey W. Fitch, USN.

Captain Ingalls took command of U.S. Naval Air Station 29 (now, Daniel K. Inouye International Airport—HNL—Honolulu, Hawaii) on 1 April 1944.

Captain Ingalls was released from active duty 8 November 1945, but he remained an officer in the Naval Reserve. Ingalls returned to Pan American World Airways as vice president, and remained in that position until 1949. Later, he was president and publisher of the Cincinnati Times-Star newspaper, and a vice president of Taft Broadcasting Company.

David Sinton Ingalls, April 1952. (Nina Leen/LIFE Magazine)

By 1951, Ingalls held the rank of Commodore. On 1 July 1955, Commodore Ingalls was promoted to the rank of Rear Admiral. From 1945 until 1959, Ingalls was Commander, Navy Reserve Forces Command (COMNAVRESFORCOM). He retired from the Naval Reserve in February 1959.

During his Naval career, Rear Admiral Ingalls had been awarded the Navy Cross, the Distinguished Service Medal, the Legion of Merit, the Bronze Star, World War I Victory Medal, American Defense Service Medal, American Campaign Medal, Asiatic-Pacific Campaign Medal with four service stars, the World War II Victory Medal, the National Defense Service Medal, the Naval Reserve Medal, and the Armed Forces Reserve Medal with hourglass device.

Miss Louise Hale Harkness Ingalls with her father, David S. Ingalls, 1980. (Historic Images)

Louise Harkness Ingalls died in 1978. David Ingalls married his second wife, Frances W. Wragg, 16 February 1979.

Ingalls is the author of Hero of the Angry Sky: The World War I Diary and Letters of David S. Ingalls, America’s First Naval Ace, Ohio University Press, 2013 (Edited by Geoffrey L.  Rossano).

Rear Admiral David Sinton Ingalls died 26 April 1985 at the age of 86 years. He is buried at the Warm Springs Cemetery, Warm Springs, Virginia.

¹ Humber, Ltd., Bentley B.R.1 150 h.p., B.R.1 (5.7:1 c.r.); Clerget 9B, 130 h.p., Clerget 9Bf, 130 h.p. (long stroke): Gnôme Monosoupape,  100 h.p., Gnôme Monosoupape, 150 h.p.; Le Rhône, 110 h.p., and Le Rhône 180 h.p.

² Sopwith Aviation Co., Ltd., Kingston-on-Thames; Boulton and Paul, Ltd., Norwich; British Caudron Co., London; Clayton and Shuttleworth, Ltd., Lincoln; Hooper and Co., Ltd., London; March, Jones and Cribb, Ltd., Leeds; Nieuport and General Aircraft Co., Ltd., London; Ruston, Proctor and Co., Ltd., Lincoln; Fairey Aviation Co., Ltd.; Portholme Aerodrome Ltd., Huntingdon; Wm. Beardmore & Co., Ltd., Glasgow; Pegler & Co., Ltd., Doncaster.

© 2017, Bryan R. Swopes

16 September 1975

Mikoyan Design Bureau E155MP 83/1 (Mikoyan)
Mikoyan Design Bureau E-155MP 83/1 (OKB Mikoyan)
Alexander Vasilyevich Fedotov (1932–1982)
Alexander Vasilyevich Fedotov

16 September 1975: Alexander Vasilyevich Fedotov, Mikoyan Experimental Design Bureau’s chief test pilot, took the Product 83 prototype, E-155MP 83/1, for its first flight.

Project 83 was a two-seat, twin-engine, Mach 2.8+ interceptor, designed as a successor to the Mikoyan-Gurevich MiG 25 “Foxbat” and would be designated the MiG 31. The Soviet Ministry of Defense assigned odd numbered designators to fighter-type aircraft, while NATO, the North Atlantic Treaty Organization, gave them identifying names beginning with the letter F. NATO calls the MiG 31 “Foxhound.”

The E-155MP is 22.69 meters (77 feet, 5 inches) long with a wingspan of 13.46 meters (44 feet, 2 inches) and overall height of 5.15 meters (16 feet, 11 inches). Its empty weight is 20,800 kilograms (45,856 pounds), normal takeoff weight 40,600 kilograms (89,508 pounds) and maximum takeoff weight of 46,000 kilograms (101,413 pounds).

Mikoyan Design Bureau Ye-155MP, 83/1, first prototype of the MiG-31 Fox Hound. (Mikoyan)
Mikoyan Design Bureau E-155MP, 83/1, first prototype of the MiG-31 Foxhound. (Mikoyan Experimental Design Bureau)

The aircraft is powered by two low-bypass-ratio Soloviev Design Bureau D-30 F6 turbofan engines, producing 91.00 kN (20,458 pounds of thrust), each, and 152.00 kN (34,171 pounds thrust), each, with afterburners.

The E-155MP had a maximum speed of Mach 2.82 (2,995 kilometers per hour/1,861 miles per hour) at 17,500 meters (57,415 feet) and 1500 (932 miles per hour) at low altitude. The prototype’s service ceiling was 20,000 meters (65,617 feet), and it had a range of 2,150 kilometers (1,336 miles).

The aircraft is unsuitable for air combat manuevering. The airframe is limited to a load factor of 5 Gs.

Mikoyan Design Bureau E155MP 83/1 (Mikoyan)
Mikoyan Design Bureau E155MP 83/1 (OKB Mikoyan)

The production MiG 31 is armed with one Gryazev-Shipunov GSh-6 23 23mm six-barrel rotary cannon with 260 rounds of ammunition. Four Vympel R-33 long-range air-to-air missiles are carried in fuselage recesses, and various combinations of short and medium range missiles can be carried on pylons under the wings.

The MiG 31 was in production from 1979 until 1994. Beginning in 2010, a modernization program to bring the up to the MiG 31BM configuration. It is believed that approximately 400 MiG 31 interceptors are in service.

A Russian Air Force MiG-31. (Dmitriy Pichugin)
A Russian Air Force MiG 31. (Dmitriy Pichugin via Wikipedia)

Alexander Vasilievich Fedotov born 23 June 1932 at Stalingrad, Russia (renamed Volgograd in 1961). He graduated from the Air Force Special School at Stalingrad,  and in 1950, entered the Soviet Army. Fedotov attended the Armavir Military Aviation School of Pilots at Amravir, Krasnodar Krai, Russia, graduating in 1952, and then became a flight instructor. In 1958 he attended the Ministry of Indutrial Aviation Test Pilot School at Zhukovsky. He was a test pilot for the Mikoyan Experimental Design Bureau from 1958 to 1984. In 1983, Alexander Fedotov was promoted to the rank of Major General in the Soviet Air Force.

On 22 July 1966, Fedotov was honored as a Hero of the Soviet Union. He was named an Honored Test Pilot of the Soviet Union, 21 February 1969. He was qualified as a Military Pilot 1st Class. Fedotov was twice awarded the Order of Lenin, and also held the Order of the Red Banner and the Order of the Red Banner of Labor.

During his career as a test pilot, Major General Fedotov had been forced to eject from an airplane three times. He had also set 15 Fédération Aéronautique Internationale world records for speed, altitude and time to altitude. One of these, FAI Record File Number 2825, in which he flew a Mikoyan E-266M to 37,650 meters (123,534 feet), 31 August 1977, remains the current record. The FAI has also honored him three times with The De la Vaulx Medal (1961, 1973 and 1977), and in 1976 awarded him the FAI’s Gold Air Medal.

Major General Alexander Vasilyevich Fedotov and his navigator, Valerie Sergeyvich Zaytevym, were killed when the second MiG 31 prototype, number 83/2, crashed during a test flight. Neither airman was able to eject.

Major General Alexander Vasilyevich Federov, Hero of the Soviet Union.
Major General Alexander Vasilyevich Federov, Hero of the Soviet Union

© 2017, Bryan R. Swopes

15 September 1948

Major Richard L. Johnson, United States Air Force.
Major Richard Lowe Johnson, United States Air Force. (Unattributed)
Major Richard L. Johnson with the record-setting North American Aviation F-86A Sabre.
Major Richard L. Johnson with the record-setting North American Aviation F-86A Sabre. (Unattributed)

15 September 1948: Major Richard L. Johnson, U.S. Air Force, Air Materiel Command, set a new Fédération Aéronautique Internationale (FAI) World Record Speed Over a 3 Kilometer Course,¹ flying the sixth production North American Aviation F-86A-1-NA Sabre, serial number 47-611, at Muroc Air Force Base, California (renamed Edwards AFB in 1949).

The air temperature was 70° F. (21° C.) with very little wind. Making four consecutive passes at an altitude of 75–125 feet (23 to 38 meters), the Sabre averaged 1,079.84 kilometers per hour (670.98 miles per hour) — 0.889 Mach. The slowest pass was 669.830 miles per hour and the fastest was 672.762 miles per hour (1,077.987 and 1,082.705 kilometers per hour, respectively) — 0.8875–0.8914 Mach.

This was Major Lowe’s second attempt for the speed record. At the National Air Races in Cleveland, Ohio, on 5 September, official timers clocked the wrong airplane, and then on a repeat pass, a timing camera jammed. During that attempt, Major Johnson flew under a light airplane which had wandered onto the course, missing it by about ten feet (3 meters).

Major Richard L Johnson, USAF with F-86A-1-NA 47-611 and others at Muroc AFB, 15 September 1948. Note the gun port doors on this early production aircraft. They opened in 1/20 second as the trigger was pressed. Proper adjustment was complex and they were soon eliminated. (Image from F-86 SABRE, by Maurice Allward, Charles Scribner’s Sons, New York, 1978, Chapter 3 at Page 24.)
Major Richard L. Johnson, USAF with F-86A-1-NA Sabre 47-611 and others at Muroc AFB, 15 September 1948. Note the gun port doors on this early production aircraft. They opened in 1/20 second as the trigger was pressed. Proper adjustment was complex and they were soon eliminated. (Image from F-86 Sabre, by Maurice Allward, Charles Scribner’s Sons, New York, 1978, Chapter 3 at Page 24.)
The De la Vaulx Medal.

Major Johnson was awarded the De la Vaulx Medal by the Fédération Aéronautique Internationale.

North American Aviation claimed that any F-86 coming off the assembly line could beat this world record speed. This record stood until 1952 when it was broken by an F-86D Sabre.

The Associated Press reported:

Air Force Tells Of New Speed

     NEW YORK(AP) — The Air Force announced Saturday a new world speed record of 670.981 miles an hour, made with a fully armed standard jet fighter, the North American F-86.

     The mark was set Wednesday. It is 20 miles an hour faster than the record set in August, 1947, by a Navy research plane, the Douglas D-558.

     It was the first world speed mark in history for a production model aircraft ready to fight.

     The pilot was Maj. Richard L. Johnson, slender quiet-spoken test flier for the Air Material Command at Wright-Patterson Airbase near Dayton Ohio. He flew the course at Muroc Lake, Calif., where the record was raised three times last year.

     Gen. Hoyt S. Vandenberg, Air Force chief of staff, announced the new mark at Mitchel Field, Long Island, where he participated in one of the numerous shows being held in observance of the first anniversary of the Air Force.

Eugene Register-Guard, Saturday, 18 September 1948, Page 1, Column 7.

Major Johnson had made a previous speed record attempt flying a different Sabre, but due to a technical problem with the timing equipment, that attempt was disqualified.

47-605 was the first production F-86A-1-NA Sabre. (U.S. Air Force)
F-86A-1-NA 47-605 was the first production Sabre. It first flew on 20 May 1948. (U.S. Air Force)

47-611 was from the first production block of thirty-three F-86A-1-NA Sabres (originally designated P-86A) and was built at North American Aviation’s Inglewood, California, plant. Its NAA serial number was 151-38438. The airplane was withdrawn from service 16 November 1955 and assigned as a ground trainer for the California Air National Guard at Van Nuys, California.

The F-86A was a single-seat, single-engine, swept-wing day fighter, powered by a turbojet engine. The airplane’s design team was headed by Edgar Schmued, who was also responsible for North American’s legendary P-51 Mustang of World War II.

The F-86A had the same dimensions as the prototype XP-86 which had first flown almost two years earlier. The F-86A was 37 feet, 6.6 inches (11.445 meters) long with a wingspan of 37 feet, 1.4 inches (11.313 meters) and overall height of 14 feet, 8.9 inches (4.493 meters). It had an empty weight of 10,093 pounds (4,578 kilograms) and the maximum takeoff weight was 15,876 pounds (7,201 kilograms).

North American Aviation F-86A-1-NA Sabre 47-605, the first production aircraft. (U.S. Air Force)
North American Aviation F-86A-1-NA Sabre 47-605, the first production aircraft. (U.S. Air Force)

The F-86 wings’ leading edges were swept to 35° and included leading edge slats, which automatically extended at low speed to provide an increase in lift.

The F-86A was initially powered by a General Electric TG-190A (J47-GE-1) turbojet engine. This was a major improvement over the Chevrolet-built J35-C-3 that had powered the prototype, and it produced almost 25% greater thrust. The J47-GE-1 was rated at 4,850 pounds of thrust (21.57 kilonewtons), or 5,820 pounds (25.89 kilonewtons) with water injection. The J47 was an axial-flow turbojet with a 12-stage compressor, eight combustion chambers, and single-stage turbine. The engine was 12 feet, 0.0 inches (3.658 meters) long, 3 feet, 3.0 inches (0.991 meters) in diameter and weighed 2,475 pounds (1,123 kilograms).

Early in F-86A production, the engine was standardized with the J47-GE-13, which was rated at 5,200 pounds of thrust (23.13 kilonewtons) and 6,000 pounds (26.69 kilonewtons) “wet.” The -13 had the same exterior dimensions as the -1 engine, but weighed 50 pounds (23 kilograms) more.

North American Aviation F-86-A-NA Sabre 47-630. (North American Aviation, Inc./Chicago Tribune)
North American Aviation F-86A-1-NA Sabre 47-630. (North American Aviation, Inc.)

The F-86A had a maximum speed of 679 miles per hour (1,093 kilometers per hour) at Sea Level, and 601 miles per hour (967 kilometers per hour) at 35,000 feet (10,668 meters). The service ceiling as 48,000 feet (14,630 meters) and it could climb to 40,000 feet (12,192 meters) in 10 minutes, 24 seconds. It had a range of 1,200 miles (1,931 kilometers).

This photograph of a Canadair CL-13 Sabre, a license-built F-86E, shows the firepower of the six .50-caliber machine guns placed close together in the airplane's nose. The smoke trails show the spin of the bullets caused by the gun barrels' rifling. (Royal Canadian Air Force)
This photograph of a Canadair CL-13 Sabre (a license-built F-86E) test-firing its guns shows the firepower of the six .50-caliber machine guns placed close together in the airplane’s nose. The smoke trails show the spin of the bullets caused by the gun barrels’ rifling. The total rate of fire is approximately 7,200 rounds per minute. (Royal Canadian Air Force)

Designed as a day fighter, the F-86 Sabre was armed with six air-cooled Browning AN-M3 .50-caliber aircraft machine guns with 267 rounds of ammunition per gun. These guns had a rate of fire of 1,200 rounds per minute. The F-86A-1-NA had electrically-actuated doors covering the gun ports to maintain the aerodynamically clean surface. Because of their complexity, these doors were deleted beginning with the F-86A-5-NA aircraft.

The fighter could also carry bombs or rockets.

In this photograph, the record-settining North American Aviation F-86A Sabre, 47-611, is seen suspended from a crane while it conducts armament tests. It has just launched a 5-inch High Velocity Aerial Rocket. (U.S. Air Force)

Richard Lowe Johnson ² was born at Cooperstown, North Dakota, 21 September 1917. He was the eighth of nine children of Swedish immigrants, John N. Johnson, a farmer, and Elna Kristina Helgesten Johnson, a seamstress.

Dick Johnson attended Oregon State College at Corvallis, Oregon, as a member of the Class of 1943. He was a member of the Sigma Alpha Epsilon (ΣΑΕ) fraternity.

Dick Johnson was a pitcher for the college baseball team, and later, played for the Boston Red Sox “farm” (minor league) system.

On 18 June 1942, Johnson enlisted as a private in the Air Corps, United States Army. On 5 November, he was appointed an aviation cadet and assigned to flight training.

Aviation Cadet Johnson married Miss Juanita Blanche Carter, 17 April 1943, at Ocala, Florida. The civil ceremony was officiated by Judge D. R. Smith.

After completing  flight training, on 1 October 1943, Richard L. Johnson was commissioned as a second lieutenant, Army of the United States (A.U.S.).

Lieutenant Johnson was assigned to the 66th Fighter Squadron, 57th Fighter Group, Twelfth Air Force, in North Africa, Corsica, and Italy, flying the Republic P-47 Thunderbolt. He was promoted to first lieutenant, A.U.S., 9 August 1944, and just over three months later, 26 November 1944, to the rank of captain, A.U.S. On 14 May 1945, Captain Johnson was promoted to the rank of major, A.U.S. (Major Johnson was assigned a permanent rank of first lieutenant, Air Corps, United States Army, on 5 July 1946, with a date of rank retroactive to 21 September 1945.)

Republic P-47D-25-RE Thunderbolt 42-26421, assigned to the 66th Fighter Squadron, 57th Fighter group, Twelfth Air Force. This airplane was purchased by the employees of Republic Aviation. (American Air Museum in Britain UPL 25505)

During World War II, Major Johnson flew 180 combat missions with the 66th Fighter Squadron. He is officially credited with one air-to-air victory, 1 July 1944. Johnson was awarded the Silver Star, the Distinguished Flying Cross with two oak leaf clusters (3 awards), and the Air Medal with twelve oak leaf clusters (thirteen awards).

In 1946, was assigned to the Air Materiel Command Engineering Test Pilot School at the Army Air Forces Technical Base, Dayton, Ohio (Wright-Patterson Air Force Base). He was the second U.S. Air Force pilot to be publicly acknowledged for breaking the “sound barrier.”

A few weeks after arriving at Dayton, Major Johnson met Miss Alvina Conway Huester, the daughter of an officer in the U.S. Navy. Dick Johnson and his wife Juanita were divorced 8 January 1947, and he married Miss Huester in a ceremony in Henry County, Indiana, 10 January 1947. They would have three children, Kristie, Lisa and Richard.

During the Korean War, Major Johnson was sent to the war zone to supervise field installations of improvements to the F-86 Sabre. He was “caught” flying “unauthorized” combat missions and was sent home.

Lieutenant Colonel Johnson resigned from the Air Force in 1953 to become the Chief Test Pilot for the Convair Division of General Dynamics. He made the first flights of the YF-102 on 24 October 1953, the F-106A Delta Dart, 26 December 1956. He made the first flight of the F-111 on 21 December 1964.

Chief Test Pilot Dick Johnson in the cockpit of a Convair B-58A Hustler, a Mach 2 strategic bomber. (Courtesy if Neil Corbett, Test and Research Pilots, Flight Test Engineers)

in 1955, Johnson was one of the six founding members of the Society of Experimental test Pilots.

Dick Johnson was Chief Engineering Test Pilot for the General Dynamics F-111 “Aardvark.” In 1967, the Society of Experimental Test Pilots awarded Johnson its Iven C. Kincheloe Award for his work on the F-111 program. In 1977, Dick Johnson, now the Director of Flight and Quality Assurance at General Dynamics, retired.

In 1998, Dick Johnson was inducted into the Aerospace Walk of Honor at Lancaster, California. His commemorative monument is located in front of the Lancaster Public Library on W. Lancaster Boulevard, just West of Cedar Avenue. ³

Lieutenant Colonel Richard Lowe Johnson, United States Air Force, (Retired), died 9 November 2002 at Fort Worth, Texas. He was buried at Arlington National Cemetery, Arlington, Virginia, on 7 January 2003.

Richard L. Johnson waves from the cockpit of the record-setting North American Aviation F-86A-1-NA Sabre, 47-611.

¹ FAI Record File Number 9866

² Several sources spell Johnson’s middle name as “Loe.”

³ Various Internet sources repeat the statement that “Richard Johnson has been honored with. . . the Thompson Trophy, Mackay Trophy, Flying Tiger Trophy, Federation Aeronautique Internationale Gold Medal and Golden Plate Award of the American Academy of Achievement. . . .” TDiA has checked the lists of awardees of each of the appropriate organizations and has not found any support for the statement.

© 2018, Bryan R. Swopes

9 September 1940

North American Aviation NA-73X prototype, NX19998, at Mines Field, California, 9 September 1940. (North American Aviation, Inc.)

9 September 1940: North American Aviation completed assembly of the NA-73X, the first prototype of the new Mustang Mk.I fighter for the Royal Air Force. This was just 117 days after the British Purchasing Commission had authorized the construction of the prototype. The airplane was designed by a team led by Edgar Schmued. The 1,150-horsepower Allison V-12 engine had not yet arrived, so the NA-73X was photographed with dummy exhaust stacks. The prototype’s company serial number was 73-3097. It had been assigned a civil experimental registration number, NX19998.

The NA-73X was a single-seat, single-engine, low wing monoplane with retractable landing gear. It was primarily of metal construction, though the flight control surfaces were fabric covered. The airplane was designed for the maximum reduction in aerodynamic drag.  The Mustang was the first airplane to use a laminar-flow wing. The fuselage panels were precisely designed and very smooth. Flush riveting was used. The coolant radiator with its intake and exhaust ducts was located behind and below the cockpit. As cooling air passed through the radiator it was heated and expanded, so that as it exited, it actually produced some thrust.

The prototype was 32 feet, 2⅝ inches (9.820 meters) long, with a wing span of 37 feet, 5/16 inch (11.286 meters). Empty weight of the NA-73X was 6,278 pounds (2,848 kilograms) and normal takeoff weight was 7,965 pounds (3,613 kilograms).

Aeronautical Engineer Edgar Schmued with a North American P-51-2-NA (Mustang Mk.IA), 41-37322. (San Diego Air and Space Museum Archives)

The NA-73X was powered by a liquid-cooled, supercharged, 1,710.60-cubic-inch-displacement (28.032 liter) Allison Engineering Company V-1710-F3R (V-1710-39) single overhead cam 60° V-12 engine, with four valves per cylinder and a compression ratio of 6.65:1. It used a single-stage, single-speed supercharger. This was a right-hand tractor engine (the V-1710 was built in both right-hand and left-hand configurations) which drove a 10 foot, 6 inch (3.200 meter) diameter, three-bladed, Curtiss Electric constant-speed propeller through a 2.00:1 gear reduction.

The V-1710-39 had a Normal Power rating of 880 horsepower at 2,600 r.p.m. at Sea Level; Take Off Power rating of 1,150 horsepower at 3,000 r.p.m. at Sea Level, with 44.5 inches of manifold pressure (1.51 Bar), 5 minute limit; and a War Emergency Power rating of 1,490 horsepower at 3,000 r.p.m., with 56 inches of manifold pressure (1.90 Bar). The V-1710-F3R was 7 feet, 4.38 inches (2.245 meters) long, 3 feet, 0.64 inches (0.931 meters) high, and 2 feet, 5.29 inches (0.744 meters) wide. It had a dry weight of 1,310 pounds (594 kilograms).

U.S. Army Air Corps flight tests of the fully-armed production Mustang Mk.I (XP-51 41-038), equipped with the V-1710-39 and a 10 foot, 9-inch (3.277 meters) diameter Curtiss Electric propeller, resulted in a maximum speed of 382.0 miles per hour (614.8 kilometers per hour) at 13,000 feet (3,962 meters). The service ceiling was 30,800 feet (9,388 meters) and the absolute ceiling was 31,900 feet (9,723 meters).

The Curtiss P-40D Warhawk used the same Allison V-1710-39 engine as the XP-51, as well as a three-bladed Curtiss Electric propeller. During performance testing at Wright Field, a P-40D, Air Corps serial number 40-362, weighing 7,740 pounds (3,511 kilograms), reached a maximum speed of 354 miles per hour (570 kilometers per hour) at 15,175 feet (4,625 meters). Although the Mustang’s test weight was 194 pounds (88 kilograms) heavier, at 7,934 pounds (3,599 kilograms), the Mustang was 28 miles per hour (45 kilometers per hour) faster than the Warhawk. This demonstrates the effectiveness of the Mustang’s exceptionally clean design.

Only one NA-73X was built. It made its first flight 26 October 1940 with test pilot Vance Breese. The prototype suffered significant damage when it overturned during a forced landing, 20 November 1941. NX19998 was repaired and flight testing resumed. The prototype’s final disposition is not known.

Originally ordered by Great Britain, the Mustang became the legendary U.S. Army Air Corps P-51 Mustang. A total of 15,486 Mustangs were built by North American Aviation at Inglewood, California and Dallas, Texas. Another 200 were built in Australia by the Commonwealth Aircraft Corporation.

The P-51 remained in service with the U.S. Air Force until 27 January 1957 when the last one, F-51D-30-NA 44-74936, was retired from the 167th Fighter Squadron, West Virginia Air National Guard. It was then transferred to the National Museum of the United States Air Force at Wright-Patterson Air Force Base, where it is on display.

North American Aviation NA-73X prototype, left front quarter view. (North American Aviation, Inc.)
North American Aviation NA-73X prototype, NX19998, left front quarter view. (North American Aviation, Inc.)

© 2017, Bryan R. Swopes

8 September 1954

Albert Scott Crossfield, NACA Test Pilot. (LIFE Magazine via Jet Pilot Overseas)
Albert Scott Crossfield, NACA Test Pilot. (Allan Grant/LIFE Magazine)

8 September 1954: Scott Crossfield, a NACA Aeronautical Research Pilot at the High Speed Flight Station, Edwards Air Force Base, California, took the North American Aviation F-100A-5-NA Super Sabre, 52-5778, on its first NACA test flight—and his first flight in an F-100.

Tests of the prototype and early production Super Sabres revealed directional stability problems, a very dangerous inertia coupling characteristic that could cause the aircraft to go violently out of control (and which would result in the death of North American’s chief test pilot, George Welch, in just another three weeks). The highly swept wings could stall at high angles of attack, causing the airplane to pitch up in the deadly “Sabre dance.” NACA wanted to explore the causes of these aerodynamic problems and design solutions.

Scott Crossfield pre-flights a North American Aviation F-100A Super Sabre. Note the extended leading-edge "slats". (LIFE Magazine via Jet Pilot Overseas.)
Scott Crossfield pre-flights a North American Aviation F-100A Super Sabre. Note the extended leading-edge “slats”. (Allan Grant/LIFE Magazine)

During the flight there was an engine fire warning and Crossfield shut down the Pratt & Whitney J57-P-7 turbojet engine. The F-100A had no flaps and North American’s own test pilots did not think a “dead stick” landing was possible due the very high landing speed required.

Scott Crossfield signs the maintenance forms for an F-100, certifying the airplane ready for flight. (LIFE Magazine via Jet Pilot Overseas)
Scott Crossfield signs the maintenance forms for an F-100, certifying the airplane ready for flight. (Allan Grant/LIFE Magazine)

Scott Crossfield tells the story in his autobiography:

. . . As a matter of fact, North American tests pilots were then flipping coins to see who would bring an F-100 in dead-stick to fulfill a requirement of the Air Force acceptance tests. I was not concerned. Dead-stick landings in low L-over-D [Lift-over-Drag] airplanes were my specialty. Every test pilot develops a strong point. I was certain that my talent lay in dead-stick landings.

With the engine idling and generating no energy to the plane’s systems, I was running out of hydraulic pressure to operate the controls. Following the handbook instructions, I pulled a lever which extended a miniature “windmill” into the slipstream. This “windmill” churned, building up pressure in the hydraulic lines. Unknown to me, there was a major leak in the line. The windmill was not helping, but hurting me. It was pumping hydraulic fluid overboard as fast as it could turn.

Scott Crossfield climbs into the cockpit of a North American Aviation F-100A-5-NA Super Sabre. (LIFE Magazine via Jet Pilot Overseas)
Scott Crossfield climbs into the cockpit of a North American Aviation F-100A-5-NA Super Sabre. (Allan Grant/LIFE Magazine)

I called Edwards tower and declared an emergency. All airborne planes in the vicinity of the base were warned away from the lake area. I held the ailing F-100 on course, dropping swiftly, following the glide path that I used for the dead-stick Skyrocket. [Douglas D-558-II Skyrocket] I flared out and touched down smoothly. It was one of the best landings I have ever made, in fact. Seconds later, while the F-100 was rolling out, the remaining bit of hydraulic pressure in the control lines drained out and the controls froze.

I then proceeded to violate a cardinal rule of aviation: never try tricks with a compromised airplane. The F-100 was still rolling at a fast clip, coming up fast on the NACA ramp, when I made my poor decision. I had already achieved the exceptional, now I would end it with a flourish, a spectacular wind-up. I would snake the stricken F-100 right up the ramp and bring it to a stop immediately in front of the NACA hangar. This trick, which I had performed so often in the Skyrocket, was a fine touch. After the first successful dead-stick landing in an F-100, it would be fitting.

Instrument panel of a North American Aviation F-100 Super Sabre. (U.S. Air Force)
Instrument panel of a North American Aviation F-100 Super Sabre. The fire warning light and hydraulic pressure gauge are at the upper right corner. (U.S. Air Force)

According to the F-100 handbook, the hydraulic brake system—a separate hydraulic system from the controls—was good for three “cycles,” engine out. This means three pumps on the brake, and that proved exactly right. The F-100 was moving at about fifteen miles an hour when I turned up the ramp. I hit the brakes once, twice, three times. The plane slowed, but not quite enough. I was still inching ahead ponderously, like a diesel locomotive. I hit the brakes a fourth time—and my foot went clear to the floorboards. The hydraulic fluid was exhausted. The F-100 rolled on, straight between the yawning hangar doors!

The good Lord was watching over me—partially anyhow. The NACA hangar was then crowded with expensive research tools—the Skyrocket, all the X-1 series, the X-3, X-4 and X-5. Yet somehow, my plane, refusing to halt, squeezed by them all and bored steadily on toward the side wall of the hangar.


The nose of the F-100 crunched through the corrugated aluminum, punching out an eight-inch steel I-beam. I was lucky. Had the nose bopped three feet to the left or right, the results could have been catastrophic. Hitting to the right, I would have set off the hangar fire-deluge system, flooding the hangar with 50,000 barrels of water and ruining all the expensive airplanes. Hitting to the left, I would have dislodged a 25-ton hangar-door counterweight, bringing it down on the F-100 cockpit, and doubtless ruining Crossfield.

Chuck Yeager never let me forget the incident. He drew many laughs at congregations of pilots by opening his talk: “Well, the sonic wall was mine. The hangar wall was Crossfield’s.” That’s the way it was at Edwards. Hero one minute, bum the next. That I was the first pilot to land an F-100 dead-stick successfully, and memorized elaborate and complete instrument data on the engine failure besides, was soon forgotten.

The F-100 is a tough bird. Within a month NACA’s plane was flying again, with Crossfield back at the helm. In the next few weeks I flew forty-five grueling flights in the airplane, pushing it to the limits, precisely defining the roll coupling. (On one flight the coupling was so severe that it cracked a vertebra in my neck.) These data confirmed, in actual flight, the need for a new F-100 tail, which North American was planning to install on later models of the airplane.

Every night after landing, I taxied the F-100 slowly to the NACA ramp. At the bottom, placed there on orders of Walt Williams, there was a large new sign, symbolic of the new atmosphere at Edwards. It said:

PLEASE COME TO A COMPLETE STOP BEFORE TAXIING UP RAMP 

Always Another Dawn, The Story Of A Rocket Test Pilot, by A. Scott Crossfield with Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960. Chapter 20 at Pages 196–199.

North American F-100A-5-NA Super Sabre parked on Rogers Dry Lake, 1959. It had been repaired and returned to service after running through the NACA hangar wall at Edwards AFB, 8 September 1954. In 1960, FW-778 was retired to Davis-Monthan AFB, Tucson, AZ. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778 parked on Rogers Dry Lake, 1959. It had been repaired and returned to service after running through the NACA hangar wall at Edwards AFB, 8 September 1954. In 1960, FW-778 was retired to Davis-Monthan AFB, Tucson, AZ. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778. (NASA)
North American Aviation F-100A-5-NA Super Sabre 52-5778 parked on the ramp in front of the NACA hangar, Edwards Air Force Base, California, 1959. (NASA)
North American F-100A Super Sabre on the ramp near the NACA High-Speed Flight Station in 1957. (NASA)
NACA High Speed Flight Station, 24 August 1954. The Boeing P2B-1S Superfortress is parked at the northeast corner of the ramp. (NASA DFRC E54-1361)

© 2017, Bryan R. Swopes