Tag Archives: Fédération Aéronautique Internationale

18 July 1966, 22:20:26.648 UTC, T minus Zero

Gemini 10 launches from LC-19, Cape Kennedy Air Force Station, at 22:20:26 UTC, 18 July 1966. (NASA)

18 July 1966: At 22:20:26.648 UTC, Gemini 10 launched from Launch Complex 19 at the Cape Kennedy Air Force Station. The two astronauts aboard were John W. Young, on his second space flight, and Michael Collins. The launch vehicle was a liquid-fueled Martin SLV-4 Titan II, serial number 62-12565.

John Watts Young, Command Pilot, and Michael Collins, Pilot,  the flight crew of Gemini 10. (NASA)

The objective of the Gemini 10 mission was to demonstrate orbital rendezvous and docking with another spacecraft, as well as “EVA”—Extra Vehicular Activity. The Gemini capsule docked with an Agena target vehicle which had been launched one hour before. The flight crew opened the hatches and Michael Collins stood in the opening, taking photographs.

Agena Target Docking Vehicle 5005. (Michael Collins/NASA)

After undocking, the Gemini located and docked with another Agena from the earlier Gemini 8 flight. Collins this time left the capsule and retrieved some experiments from the dormant target vehicle before returning to Gemini 10.

After nearly three days in space, they landed in the Pacific Ocean, 3.86 miles (6.21 kilometers) from the primary recovery ship, USS Guadalcanal (LPH-7). This set a Fédération Aéronautique Internationale (FAI) Absolute World Record for Precision Landing.¹  The total duration of the flight was 2 days, 22 hours, 46 minutes, 39 seconds.

Gemini 10 Command Pilot John Watts Young is hoisted aboard a recovery helicopter, 21 July 1966. (NASA S66-42773)

The two-man Gemini spacecraft was built by the McDonnell Aircraft Corporation of St. Louis, the same company that built the earlier Mercury space capsule. The spacecraft consisted of a reentry module and an adapter section. It had an overall length of 19 feet (5.791 meters) and a diameter of 10 feet (3.048 meters) at the base of the adapter section. The reentry module was 11 feet (3.353 meters) long with a diameter of 7.5 feet (2.347 meters). The weight of the Gemini varied from ship to ship. At launch, Gemini 10 weighed 8,295 pounds (3763 kilograms).

Gemini Spacecraft. (NASA)

The Titan II GLV was a “man-rated” variant of the Martin SM-68B intercontinental ballistic missile. It was assembled at Martin’s Middle River, Maryland, plant so as not to interfere with the production of the ICBM at Denver, Colorado. Twelve GLVs were ordered by the Air Force for the Gemini Program.

The Titan II GLV was a two-stage, liquid-fueled rocket. The first stage was 63 feet (19.202 meters) long with a diameter of 10 feet (3.048 meters). The second stage was 27 feet (8.230 meters) long, with the same diameter.

The 1st stage was powered by an Aerojet Engineering Corporation LR-87-7 engine which combined two combustion chambers and exhaust nozzles with a single turbopump unit. The engine was fueled by a hypergolic combination of hydrazine and nitrogen tetroxide. Ignition occurred spontaneously as the two components were combined in the combustion chambers. The LR-87-7 produced 430,000 pounds of thrust.² It was not throttled and could not be shut down and restarted. The 2nd stage used an Aerojet LR-91 engine which produced 100,000 pounds of thrust.³

The Gemini/Titan II GLV combination had a total height of 109 feet (33.223 meters) and weighed approximately 340,000 pounds (154,220 kilograms) when fueled.⁴

Gemini/Titan GLV-4. (NASA)
This well-used Omega Speedmaster chronograph was worn by John Young during the Gemini 10 mission. (Smithsonian Institution)

Both astronauts went on to the Apollo program, with Collins serving as Command Module Pilot for the Apollo 11 lunar landing mission, and John Young as CMP for Apollo 10. Young commanded Apollo 16, and the first space shuttle flight, Columbia STS-1 and Columbia STS-9. He was scheduled to command STS-61J to deploy the Hubble Space Telescope, but that flight  was put off by the Challenger disaster. Michael Collins went on to head the National Air and Space Museum and LTV Aerospace.

Gemini 10 is at the Kansas Cosmosphere and Space Center, awaiting restoration.

¹ FAI Record File Number 10285

² The Gemini 10 first stage engine produced a flight average of 462,750 pounds of thrust (2,058.42 kilonewtons).

³ The Gemini 10 second stage engine produced a flight average of 99,168 pounds of thrust (441.12 kilonewtons).

⁴ Gemini 10/Titan II GLV combination weighed 344,856 pounds (156,424 kilograms) at 1st Stage ignition.

© 2018, Bryan R. Swopes

18 July 1919

Élise Léontine Deroche poses with the airplane in which she would later be killed, at Le Crotoy, France, 18 July 1919.

18 July 1919: Élise Léontine Deroche was at Le Crotoy in northern France, co-piloting an experimental airplane, a civil variant of the Caudron G.3. The aircraft suddenly pitched down and crashed, killing Deroche and the pilot, M. Barrault. Mme Deroche was 36 years old.

According to a notice in Flight,

“What happened is not very clear, but it would seem that the machine in which she was flying overturned during a trial flight. Baroness de la Roche was killed instantly and the pilot, Barrault, died very shortly afterwards.”

Élise Léontine Deroche, also known as the “Baroness de la Roche,” was killed instantly in an airplane crash at le Crotoy, 18 July 1919

Élisa Léontine Deroche was born 22 August 1882 at nº 61, Rue de la Verrerie, in the 4e arrondissement, Paris, France. She was the daughter of Charles François Deroche, a plumber, and Christine Calydon Gaillard Deroche. In her early life she had hoped to be a singer, dancer and actress. Mlle. Deroche used the stage name, “Raymonde de Laroche.”

Mlle. Deroche married M. Louis Léopold Thadome in Paris, 4 August 1900. They divorced 28 June 1909.

She had a romantic relationship with sculptor Ferdinand Léon Delagrange, who was also one of the earliest aviators, and it was he who inspired her to become a pilot herself. They had a son, André, born in 1909. Delagrange was killed in an airplane accident in 1910. They never married.

After four months of training at Chalons, under M. Chateu,¹ an instructor for Voison,  Mme Deroche made her first solo flight on Friday, 22 October 1909. On 8 March 1910, Élisa Léontine Deroche was the first woman to become a licensed pilot when she was issued Pilot License No. 36 by the Aéro-Club de France.

Pilot Certificate number 36 of the l’Aéro-Club de France was issued to Mme. de Laroche. (Musee de l’Air at l’Espace)

In a 30 October 1909 article about her solo flight, Flight & The Aircraft Engineer referred to Mme. Deroche as “Baroness de la Roche.” This erroneous title of nobility stayed with her in the public consciousness. Deroche participated in various air meets, and on 25 November 1913, made a non-stop, long-distance flight of four hours duration, for which she was awarded the Coupe Femina by the French magazine, Femina.

On 20 February 1915, Mme. Deroche married Jacques Vial at Meudon, Hauts de Seine, Île-de-France, France.

During World War I she was not allowed to fly so she served as a military driver.

Elise Raymonde Deroche (Smithsonian Institution)

Many sources report that Mme Deroche set two altitude records at Issy-les Moulineaux in June 1919, just weeks before her death. One, for example, is said to have been 5,150 meters (16,896 feet), 12 June 1919. The Fédération Aéronautique Internationale (FAI), however, did not recognize records set by women until 28 June 1929.

Élisa Léontine Deroche was buried at the Cimetière du Père-Lachaise, Paris, France.

Élisa Léontine Deroche, Aviarix. (22 August 1882–18 July 1919)

¹ Sous Lieutenant Jean Pie Hyacinthe Paul Jerome Casale, Marquis de Montferato

© 2018, Bryan R. Swopes

17 July 1962

With the X-15 under its right wing, the Boeing NB-52A, 52-003, takes of from Edwards Air Force Base, 17 July 1962. The rocketplane's belly is covered with frost from the cryogenic propellants. (U.S. Air Force)
With Major Robert M. White and the X-15 under its right wing, the Boeing NB-52A Stratofortress, 52-003, takes of from Edwards Air Force Base, 17 July 1962. The rocketplane’s belly is covered with frost from the cryogenic propellants. (U.S. Air Force)

17 July 1962: At 9:31:10.0 a.m., the Number 3 North American Aviation X-15, 56-6672, was airdropped from a Boeing NB-52A Stratofortress, 52-003, over Delamar Dry Lake, Nevada. Air Force project test pilot Major Robert M. (“Bob”) White was in the cockpit. This was the 62nd flight of the X-15 Program, and Bob White was making his 15th flight in an X-15 hypersonic research rocketplane. The purpose of this flight was to verify the performance of the Honeywell MH-96 flight control system which had been installed in the Number 3 ship. Just one minute before drop, the MH-96 failed, but White reset his circuit breakers and it came back on line.

North American Aviation X-15 56-6672 immediately after being dropped by the Boeing NB-52 Stratofortress. (NASA)
North American Aviation X-15 56-6672 immediately after being dropped by the Boeing NB-52 Stratofortress. (NASA)

After dropping from the B-52’s wing, White fired the X-15’s Reaction Motors XLR-99 rocket engine and began to accelerate and climb. The planned burn time for the 57,000-pound-thrust engine was 80.0 seconds. It shut down 2 seconds late, driving the X-15 well beyond the planned peak altitude for this flight. Instead of reaching 280,000 feet (85,344 meters), Robert White reached 314,750 feet (95,936 meters). This was an altitude gain of 82,190 meters (269,652 feet), which was a new Fédération Aéronautique Internationale (FAI) World Record for Altitude Gain, Aeroplane Launched from a Carrier Aircraft.¹ (The B-52 typically launched the X-15 from an altitude of about 45,000 feet (13,716 meters.) The rocketplane reached Mach 5.45, 3,832 miles per hour (6,167 kilometers per hour).

Because of the increased speed and altitude, White was in danger of overshooting his landing at Edwards Air Force Base in California. He passed over the north end of Rogers Dry Lake and crossed the “high key”—the point where the X-15 landing maneuver begins—too high and too fast at Mach 3.5 at 80,000 feet (24,384 meters). Without power, White made a wide 360° turn over Rosamond Dry Lake then came back over the high key at a more normal 28,000 feet (8,534.4 meters) and subsonic speed. He glided to a perfect touch down, 10 minutes, 20.7 seconds after being dropped from the B-52.
A North American Aviation X-15 rocketplane just before touchdown on Rogers dry Lake. A Lockheed F-104 Starfighter chase plane escorts it. The green smoke helps the pilots judge wind direction and speed. (NASA)
North American Aviation X-15 56-6672 just before touchdown on Rogers Dry Lake. A Lockheed F-104 Starfighter chase plane escorts it. The green smoke helps the pilots judge wind direction and speed. (NASA)

This was the first time that a manned aircraft had gone higher than 300,000 feet (91,440 meters). It was also the first flight above 50 miles. For that achievement, Bob White became the first X-15 pilot to be awarded U.S. Air Force astronaut wings.

Command Pilot Astronaut insignia, United States Air Force
Command Pilot Astronaut insignia, United States Air Force

Major White had been the first pilot to fly faster than Mach 4, Mach 5 and Mach 6. He was the first to fly over 200,000 feet, then over 300,000 feet. He was a graduate of the Air Force Experimental Test Pilot School and flew tests of many aircraft at Edwards before entering the X-15 program. He made at total of sixteen X-15 flights.

A P-51 Mustang fighter pilot with the 355th Fighter Group in World War II, he was shot down by ground fire on his fifty-third combat mission, 23 February 1945, and captured. He was held as a prisoner of war until the war in Europe came to an end in April 1945.

After the war, White accepted a reserve commission while he attended college to earn a degree in engineering. He was recalled to active duty during the Korean War, and assigned to a P-51 fighter squadron in South Korea. Later, he commanded the 22nd Tactical Fighter Squadron (flying the Republic F-105 Thunderchief supersonic fighter bomber) based in Germany, and later, the 53rd TFS. During the Vietnam War, Lieutenant Colonel White, as the deputy commander for operations of the 355th Tactical Fighter Wing, flew seventy combat missions over North Vietnam in the F-105D, including leading the attack against the Paul Doumer Bridge at Hanoi, 11 August 1967, for which he was awarded the Air Force Cross.

He next went to Wright-Patterson AFB where he was director of the F-15 Eagle fighter program. In 1970 he returned to Edwards AFB as commander of the Air Force Flight Test Center. White was promoted to Major General in 1975.

General White retired from the U.S. Air Force in 1981. He died 10 March 2010.

Major Robert M. White, U.S. Air Force, with a North American Aviation X-15 on Rogers Dry Lake, 1961. (NASA)
Major Robert M. White, U.S. Air Force, with a North American Aviation X-15 on Rogers Dry Lake, 1961. (NASA)

¹ FAI Record File Number 9604

© 2017, Bryan R. Swopes

16 July 1953

LCOL William F. Barns with his North American Aviation F-86D-35-NA Sabre 51-6145, after his record-setting flight, 16 July 1953. (U.S. Air Force)

16 July 1953: Lieutenant Colonel William F. Barns, United States Air Force, set a Fédération Aéronautique Internationale (FAI) absolute World Record for Speed Over a 3 Kilometer Straight Course at the low-altitude course at the Salton Sea, California. ¹

Colonel Barns flew this North American Aviation F-86D-35-NA Sabre, serial number 51-6145, a radar-equipped all-weather interceptor. Lieutenant Colonel Barns was the Air Material Command’s pilot representative at the North American Aviation Los Angeles plant. The Sabre was a standard production airplane, the first Block 35 model built. It was fully loaded with twenty-four 2.75-inch (70 millimeter) aerial rockets.

Barns made the FAI-required four passes—two in each direction—in the Sabre interceptor. His four passes were timed at 720.574, 710.515, 721.351, and 710.350 miles per hour. (1,159.651, 1,143.463, 1,160.902, and 1,143.198 kilometers per hour).

Lieutenant Colonel William F. Barns, the Air Material Command’s pilot representative at the North American Aviation Los Angeles plant, in the cockpit of a brand-new North American Aviation F-86D-30-NA Sabre, 51-6112. (Jet Pilot Overseas)

Barns averaged 715.745 miles per hour (1,151.88 kilometers per hour)  at only 125 feet (38 meters) above the surface. The air temperature was 105 °F. (40.5 °C.)

The surface of the Salton Sea is -236 feet (-71.9 meters)—below Sea Level. Barns’ Sabre was flying at -111 feet (-33.8 meters). Under these conditions, the speed of sound, Mach 1, was 794 miles per hour (1,278 kilometers per hour), so the margin between the record speed and the onset of transonic compressibility effects was increased. Barns’ Sabre reached a maximum 0.91 Mach under these conditions.

North American Aviation F-86D-35-NA Sabre 51-6145, FAI World Speed Record holder.
North American Aviation F-86D-35-NA Sabre 51-6145, FAI World Speed Record holder.

The Associated Press reported the event:

Air Force Colonel Breaks Record

THERMAL, Calif. (AP)—An Air Force colonel flashed to a new air speed record of 715.7 miles per hour Thursday in a north American F-86D Sabre Jet.

Skimming over the hot beach of Southern California’s Salton Sea, Lt. Col. William F. Barns, 32, broke the record set last Nov. 19 over the same run by Capt. J. Slade Nash of Edwards Air Force Base.

On his first try, Barns averaged 713.6 miles per hour, a record performance, but came back a half hour later to beat that.

The airplane could not exceed 500 meters altitude (1,640 feet) at any time after takeoff on the trial, and the 3-kilometer dash had to be made below 100 meters (328 feet).

The Daily Illini, 17 July 1953, Vol. 82, Number 189, at Page 1, Column 2.

The same F-86D, 51-6145, flown by Captain Harold E. Collins, set an FAI World Record for Speed Over a 15/25 Kilometer Straight Course of 1,139.219 kilometers per hour (707.878 miles per hour) at Vandalia. Ohio, 1 September 1953. ²

William Frederick Barns was born 30 August 1920 at Baltimore, Maryland. He was the son of Claude Cox Barns and Nellie C. Hedrick Barns. The family moved to the Hawaiian Islands in 1925. He attended Theordore Roosevelt High School, in Honolulu. In 1940, William was employed as a clerk at the Bishop National Bank.

Barns began civilian flight training at John Rodgers Field near Honolulu in 1941, and was at the airfield during the attack on the Hawaiian Islands by the Imperial Japanese Navy, 7 December 1941. Barns enlisted in U.S. Army Air Corps 13 April 1942. He had brown hair and eyes, was 5 feet, 10 inches (1.78 meters) tall, and weighed 138 pounds. After qualifying as a pilot at Luke Field, Arizona, Barns was commissioned as a second lieutenant, U.S. Army Air Forces.

During World War II, Barns flew 210 combat missions with the 324th Fighter Group. He was awarded the Distinguished Flying Cross and the Silver Star.

Major and Mrs. William F. Barns, Honolulu, Oahu, Hawaiian Islands, 1949.

Colonel Barns married Miss Marylouise Hamilton at the Flyer’s Chapel of the Mission Inn, Riverside, California, 18 August 1947. They had two children, Terrie and Bill. At the time of Barn’s world speed record, the family resided in Palos Verdes Estates, a few miles south of the North American factory.

Colonel Barns retired from the U.S. Air Force, 31 May 1966. He died in Phoenix, Arizona, 17 April 1995.

North American Aviation F-86D-1-NA Sabre 50-463. (North American Aviation, Inc.)

The F-86D was an all-weather interceptor developed from North American Aviation F-86 Sabre day fighter. It was the first single-seat interceptor and it used a very sophisticated—for its time—electronic fire control system. It was equipped with radar and armed with twenty-four unguided 2.75-inch (69.85 millimeter) diameter Mark 4 Folding-Fin Aerial Rockets (FFAR) carried in a retractable tray in its belly.

A North American Aviation, Inc. advertisement, 1953. (Vintage Ad Browser)

The aircraft was so complex that the pilot training course was the longest of any aircraft in the U.S. Air Force inventory, including that of the Boeing B-47 Stratojet.

The F-86D was larger than the F-86A, E and F fighters, with a wider fuselage. Its length was increased to 40 feet, 3 inches (12.268 meters) with a wingspan of 37 feet, 1.5 inches (11.316 meters), and its height is 15 feet, 0 inches (4.572 meters). The interceptor had an empty weight of 13,518 pounds (6,131.7 kilograms), and maximum takeoff weight of 19,975 pounds (9,060.5 kilograms). It retained the leading edge slats of the F-86A, F-86E and early F-86F fighters. The horizontal stabilizer and elevators were replaced by a single, all-moving stabilator. All flight controls were hydraulically boosted. A “clamshell” canopy replaced the sliding unit of earlier models

The F-86D was powered by a General Electric J47-GE-17 engine. This was a single-shaft, axial-flow turbojet with afterburner. The engine had a 12-stage compressor, 8 combustion chambers, and single-stage turbine. The J47-GE-17 was equipped with an electronic fuel control system which substantially reduced the pilot’s workload. It had a normal (continuous) power rating of 4,990 pounds of thrust (22.20 kilonewtons); military power, 5,425 pounds (24.13 kilonewtons) (30 minute limit), and maximum 7,500 pounds of thrust (33.36 kilonewtons) with afterburner (15 minute limit). (All power ratings at 7,950 r.p.m.) It was 18 feet, 10.0 inches (5.740 meters) long, 3 feet, 3.75 inches (1.010 meters) in diameter, and weighed 3,000 pounds (1,361 kilograms).

North American Aviation F-86D-20-NA Sabre 51-3045. (U.S. Air Force)

The maximum speed of the F-86D was 601 knots (692 miles per hour/1,113 kilometers per hour) at Sea Level, 532 knots (612 miles per hour/985 kilometers per hour) at 40,000 feet (12,192 meters), and 504 knots (580 miles per hour/933 kilometers per hour)at 47,800 feet (14,569 meters).

The F-86D had an area intercept range of 241 nautical miles (277 statute miles/446 kilometers) and a service ceiling of 49,750 feet (15,164 meters). The maximum ferry range with external tanks was 668 nautical miles (769 statute miles/1,237 kilometers). Its initial rate of climb was 12,150 feet per minute (61.7 meters per second) from Sea Level at 16,068 pounds (7,288 kilograms). From a standing start, the F-86D could reach its service ceiling in 22.2 minutes.

North American Aviation F-86D-60-NA Sabre 53-4061 firing a salvo of FFARs.

The F-86D was armed with twenty-four 2.75-inch (69.85 millimeter) unguided Folding-Fin Aerial Rockets (FFAR) with explosive warheads. They were carried in a retractable tray, and could be fired in salvos of  6, 12, or 24 rockets. The FFAR was a solid-fuel rocket. The 7.55 pound (3.43 kilogram) warhead was proximity-fused, or could be set for contact detonation, or to explode when the rocket engine burned out.

The F-86D’s radar could detect a target at 30 miles (48 kilometers). The fire control system calculated a lead-collision-curve and provided guidance to the pilot through his radar scope. Once the interceptor was within 20 seconds of its target, the pilot selected the number of rockets to fire and pulled the trigger, which armed the system. At a range of 500 yards (457 meters), the fire control system launched the rockets.

A potential adversary of the North American Aviation F-86D Sabre all-weather interceptor was the Tupolev Tu-85 long-range strategic bomber.

Between December 1949 and September 1954, 2,505 F-86D Sabres (sometimes called the “Sabre Dog”) were built by North American Aviation. There were many variants (“block numbers”) and by 1955, almost all the D-models had been returned to maintenance depots or the manufacturer for standardization. 981 of these aircraft were modified to a new F-86L standard. The last F-86D was removed from U.S. Air Force service in 1961.

After its service with the United States Air Force, the world-record-setting Sabre, 51-6145, was transferred to NATO ally, the Royal Hellenic Air Force.

North American Aviation F-86D-30-NA Sabre 51-6143, right roll over Malibu, California.

¹ FAI Record File Number 9868

² FAI Record File Number 8869

© 2018, Bryan R. Swopes

14 July 1959

Major General Vladimir Sergeyevich Ilyushin, Hero of the Soviet Union

14 July 1959: At Podmoskovnoe, USSR, famed Soviet test pilot Vladimir Sergeyevich Ilyushin flew the Sukhoi T-43-1, a prototype of the Su-9 interceptor, to a Fédération Aéronautique Internationale (FAI) World Record for Altitude of 28,852 meters (94,659 feet).¹

Vladimir Sergeyevich Ilyushin was the son of Sergey Ilyushin, the Soviet aircraft designer. He made the first flights of many Sukhoi fighters. A Hero of the Soviet Union, he retired with the rank of major general.

Sukhoi T-43-1
Vladimir Sergeyevich Ilyushin, wearing flight suit and helmet, with a Sukhoi Su-9 in the background.
Vladimir Sergeyevich Ilyushin, wearing flight suit and helmet, with a Sukhoi Su-9 in the background.

The Sukhoi T-43-1 was the prototype for the Su-9 all-weather interceptor, a single-place, single-engine Mach 2+ fighter. It was built from the first pre-production Sukhoi T-3, with a new nose section and enlarged rear fuselage to accommodate a larger engine.

The production Su-9 is similar in appearance to the Mikoyan Gurevich MiG-21, but is much larger and heavier. It is 17.37 meters (56.99 feet) long with a wingspan of 8.43 meters (27.66 feet) and overall height of 4.88 meters (16.01 feet). The interceptor’s empty weight is 8,620 kilograms (19,004 pounds), and the maximum takeoff weight is 13,500 kilograms (29,762 pounds).

Sukhoi T-43-12 prototype.
Sukhoi T-43-12 prototype.

Both the T-43-1 prototype and the production Su-9 are powered by a Lyulka AL-7 nine-stage axial flow turbojet engine which produces 22,050 pounds of thrust with afterburner.

The Su-9 has a maximum speed of Mach 2.0 (2,135 kilometers per hour, 1,327 miles per hour). The service ceiling is 16,760 meters (54,987 feet) and range is 1,125 kilometers (699 miles).

The T-43-1 later set FAI records for sustained altitude and speed over a measured course.

Sukhoi Su-9
Sukhoi Su-9, right front quarter
Sukhoi Su-9
Sukhoi Su-9, right profile

¹ FAI Record File Number 10351

© 2017, Bryan R. Swopes