Jackie Cochran with her record-setting Northrop T-38A-30-NO Talon, 60-0551, at Edwards Air Force Base, California, 1961. (U.S. Air Force)
18 September 1961: Jackie Cochran, acting as a test pilot and consultant for Northrop Corporation, set a Fédération Aéronautique Internationale (FAI) World Record for Distance when she flew the Northrop T-38A-30-NO Talon, 60-0551, from Palmdale, California, to Minneapolis, Minnesota, a distance of 2,401.780 kilometers (1,492.397 miles).¹
Jacqueline Cochran’s Diplôme de Record in the San Diego Air and Space Museum Archives. (Bryan R. Swopes)
Jackie’s friend, famed Air Force test pilot Colonel Chuck Yeager, kept notes during the series of record attempts:
September 18: Jackie took off from Palmdale at 10:00 am for attempt to set records from points to points. I took off from Edwards with 275-gallon [1,041 liter] drop tanks. During climb Jackie reported rough engine and poor performance. Also the fuel flow was inoperative. Jackie returned to the field where I finally found her takeoff flaps were still down. Also her navigation lights and beacon were on. I was rather disappointed. She’s a little cocky in the airplane. She landed back there at Palmdale with 1500 pounds [680 kilograms] of fuel in each side and made a good heavy-weight landing. The aircraft refueled and another takeoff was made at 12:30 pm. Everything went smooth this flight. We ran into clouds at the edge of Utah which lasted until Cheyenne, Wyo. Clear the rest of the way. Jackie landed with 250 pounds of fuel in each side. Made a beautiful landing and turned off after a 4000 foot [1,220 meters] ground roll. Bob White returned the F-100 to Edwards.
— Brigadier General Charles Elwood (“Chuck”) Yeager, U.S. Air Force, quoted inJackie Cochran: An Autobiography, by Jacqueline Cochran and Maryann Bucknum Brinley, Bantam Books, New York, 1987, Pages 306.
Jackie Cochran and Chuck Yeager at Edwards Air Force Base, California, after a flight in the record-setting Northrop T-38A Talon. (U.S. Air Force)
The Northrop T-38A Talon is a two-place, twin-engine jet trainer capable of supersonic speed. It is 46 feet, 4 inches (14.122 meters) long with a wingspan of 25 feet, 3 inches (7.696 meters) and overall height of 12 feet, 10 inches (3.912 meters). The trainer’s empty weight is 7,200 pounds (3,266 kilograms) and the maximum takeoff weight is 12,093 pounds (5,485 kilograms).
The T-38A is powered by two General Electric J85-GE-5 turbojet engines. The J85 is a single-shaft axial-flow turbojet engine with an 8-stage compressor section and 2-stage turbine. The J85-GE-5 is rated at 2,680 pounds of thrust (11.921 kilonewtons), and 3,850 pounds (17.126 kilonewtons) with afterburner. It is 108.1 inches (2.746 meters) long, 22.0 inches (0.559 meters) in diameter and weighs 584 pounds (265 kilograms).
Northrop T-38A-30-NO Talon at Edwards Air Force Base, California. (U.S. Air Force)
It has a maximum speed of Mach 1.08 (822 miles per hour, 1,323 kilometers per hour) at Sea Level. The Talon’s service ceiling of 55,000 feet (16,764 meters) and it has a maximum range of 1,093 miles (1,759 kilometers).
In production from 1961 to 1972, Northrop has produced nearly 1,200 T-38s. As of January 2014, the U.S. Air Force had 546 T-38A Talons in the active inventory. It also remains in service with the U.S. Navy, and the National Aeronautics and Space Administration.
Jackie Cochran’s record-setting T-38 is in the collection of the Smithsonian Institution, National Air and Space Museum.
Northrop T-38A Talon 60-0551, now twenty-one years old, sits on the ramp at the Sacramento Air Logistics Center, McClellan Air Force Base, Sacramento, California, 1981. (Photograph by Gary Chambers, used with permission)
Lieutenant Ellis Dent Shannon, Air Corps, United States Army
18 September 1948: The first delta-winged aircraft took flight for the first time when Consolidated-Vultee Aircraft Corporation test pilot Ellis D. “Sam” Shannon lifted off from Muroc Dry Lake with the prototype delta-wing XF-92A, serial number 46-682. For the next 18 minutes he familiarized himself with the new aircraft type, before landing back on the lake bed.
The Convair XF-92A on Muroc Dry Lake. (U.S. Air Force)
Later, with Captain Chuck Yeager flying, the XF-92A reached Mach 1.05. Yeager found that the airplane’s delta wing made it nearly impossible to stall, even with a 45° angle of attack. He was able to land the airplane at nearly 100 miles per hour slower than the designers had predicted.
The XF-92A was a difficult airplane to fly. NACA test pilot Scott Crossfield commented, “Nobody wanted to fly the XF-92. There was no lineup of pilots for the airplane. It was a miserable flying beast.” Scotty made 25 flights in the experimental delta-winged aircraft. On its last flight, 14 October 1953, the airplane’s nose gear collapsed after landing. The XF-92A was damaged and never flew again.
Convair XF-92A 46-682 on Muroc Dry Lake, 1948. (U.S. Air Force)
The XF-92A (Consolidated-Vultee Model 7-002) was a single-place, single-engine prototype fighter. The airplane was 42 feet, 6 inches (12.954 meters) long with a wingspan of 31 feet, 4 inches (9.550 meters) and overall height of 17 feet, 9 inches (5.410 meters). It had an empty weight of 9,078 pounds (4,118 kilograms) and gross weight of 14,608 pounds (6,626 kilograms).
The prototype was originally powered by an Allison J33-A-21 turbojet engine with a single-stage centrifugal flow compressor and single-stage turbine. It produced 4,250 pounds of thrust at 11,500 r.p.m. at Sea Level. The engine was 8 feet, 6.9 inches (2.614 meters) long, 4 feet, 2.5 inches (1.283 meters) in diameter, and weighed 1,850 pounds (839 kilograms). This was later replaced by a more powerful J33-A-29 (7,500 pounds thrust).
The XF-92A touches down on Muroc Dry Lake, 1948. (San Diego Air and Space Museum Archives)
The XF-92A had a maximum speed of 718 miles per hour (1,156 kilometers per hour) and a service ceiling of 50,750 feet (15,469 meters).
The XF-92A was not put into production. It did appear in several motion pictures, including “Toward The Unknown” (one of my favorites) and “Jet Pilot.” It is in the collection of the National Museum of the United States Air Force. This was the first of several Convair delta-winged aircraft, including the F2Y Sea Dart, F-102A Delta Dagger and F-106A Delta Dart supersonic interceptors, and the B-58A Hustler four-engine Mach 2+ strategic bomber.
Convair XF-92A. (NACA High Speed Flight Station)
Consolidated-Vultee XF-92A 46-682 is displayed at the National Museum of the United States Air Force, Wright-Patterson Air Force Base, Ohio.
The flight test program of the XF-92A came to an ignominious conclusion on 14 October 1953. (San Diego Air and Space Museum Archives)
Ellis Dent Shannon was born at Andalusia, Alabama, 7 February 1908. He was the third of five children of John William and Lucy Ellen Barnes Shannon.
He was commissioned as a second lieutenant the Alabama National Guard (Troop C, 55th Machine Gun Squadron, Cavalry) 21 May 1926. He transferred to the U.S. Army Air Corps in 1929. In 1930, he was stationed at Brooks Army Airfield, Texas.
In 1932 Shannon was employed was assigned as a flight instructor and an advisor to the government of China.
On 24 December 1932, Shannon married Miss Martha Elizabeth Reid at Shanghai, China. They had son, Ellis Reid Shannon, born at Shanghai, 24 August 1934, and a daughter, Ann N. Shannon, born at Baltimore, Maryland, in 1940.
Shannon and his family returned to the United States in 1935 aboard SS Bremen, arriving at New York.
He was employed by the Glenn L. Martin Co., at Baltimore, Maryland, in 1936 as a test and demonstration pilot. He travel throughout Latin America for the company, demonstrating the company’s aircraft. As a test pilot he flew the Martin Model 187 Baltimore, the B-26 Marauder, PBM Mariner and the Martin JRM Mars.
In February 1943, Shannon started working as a Chief of Flight Research for the Consolidated Aircraft Company at San Diego, California. While there, made the first flights of the Consolidated XB-24K, a variant of the Liberator bomber with a single vertical tail fin; the XR2Y-1, a prototype commercial airliner based on the B-24 Liberator bomber; the XB-46 jet-powered medium bomber; the XP5Y-1 Tradewind, a large flying boat powered by four-turboprop-engines; the Convair 340 Metropolitan airliner; and the XF2Y Sea Dart, a delta-winged seaplane powered by two turbojet engines. Shannon also participated in the flight test program of the YF-102A Delta Dart.
After retiring from Convair in 1956, Ellis and Martha Shannon remained in the San Diego area. Ellis Dent Shannon died at San Diego, California, 8 April 1982 at the age of 74 years.
Ellis Dent Shannon, Convair test pilot, circa 1953. (Photograph courtesy of Neil Corbett, Test and Research Pilots, Flight Test Engineers)
In a visual reminder of United States Air Force heritage, a World War II-era Boeing B-17G Flying Fortress four-engine heavy bomber flies in formation with a Boeing B-52H Stratofortress eight-engine strategic bomber. The B-17 is a Lockheed Vega B-17G-105-VE, 44-85718. This B-52, 60-0054, has been in active service for more than 63 years. (U.S. Air Force photo/Master Sgt. Michael A. Kaplan/0600513-F-0558K-101.JPG)
18 September 1947: The United States Army Air Forces become a separate military service, the United States Air Force.
NOTE:After 8+ years and 1,524 published posts, This Day in Aviation is going to try something new today. TDiA was contacted by a regular reader with a suggestion for a new post. He was so knowledgeable about the incident, that rather than reinvent the wheel, I asked him to write the following article. I hope that you find it as interesting as I did. Please welcome our first guest author, Captain Sean M. Cross, United States Coast Guard (Retired). —Bryan
SABENA Douglas DC-4-1009 Skymaster OO-CBR, sister-ship of OO-CBG
18 September 1946: In the summer of 1946, SABENA (Societé Anonyme Belge d’Exploitation de la Navigation Aérienne, the national airline of Belgium) began twice-weekly flights from Brussels, Belgium, to New York City, with refueling stops at Shannon, Ireland, and Gander, Newfoundland, Canada. The airline operated brand-new four-engine Douglas DC-4 Skymasters on the route.
A little after 8:00 p.m., Tuesday, 17 September, OO-CBG departed Shannon for the overnight flight to Gander. The Douglas Skymaster was under the command Captain Jean Ester, a Belgian who had flown with the Royal Air Force during World War II. The co-pilot was Albert Drossaert; with Leopold Verstraeten, navigator; Paul Fassbender, flight engineer; and radio operator Jean Dutoict. There were two flight attendants , Jeanne Bruylant and Jean Rookx, and 37 passengers.
OO-CBG was due at Gander at 0720, Wednesday morning. At 0737, the flight reported by radio, estimating that it was 16 minutes out.
SABENA OO-CBG never arrived.
The Skymaster crashed during harsh weather 24 miles (39 kilometers) southwest of Gander. An inbound Transcontinental and Western Airlines (TWA) DC-4 located the crash site and remained overhead until a United States Coast Guard Consolidated PBY-5A Catalina flying boat, serial number 48314 (c/n 1506) from Air Detachment Argentia, arrived over the scene and confirmed that the wreckage was that of the missing SABENA airliner and that survivors were seen.
A PBY Catalina flies over the crash scene of SABENA’s Douglas DC-4. (National Naval Aviation Museum 1993.501.073.099)
The crash site was heavily wooded and the ground proved to be a very large bog. As the aircraft could not land, emergency aid supplies were dropped by parachute and plans were formulated to rescue the survivors.
A PBY-5A with a U.S. Army medical team from Fort McAndrew, Argentia, under the command of Captain Samuel Preston Martin III.M.D., U.S. Army, landed on Dead Wolf Pond, a lake about one and a half miles (2.4 kilometers) long, located five miles (8 kilometers) from the crash site.
With the assistance of experienced woodsman from Gander, Dr. Martin and his medical team began the hazardous trip down a river known as Dead Wolf Brook from the lake to an area near the crash site. Martin’s team then made their way by foot through the boggy area to the DC-4 and the survivors.
Dr. Martin determined that many of the severely injured would not survive the rugged overland trip upriver and that some other way had to be found to extract the survivors and rescuers.
Transiting Dead Wolf Brook. (U.S. Coast Guard)
The U.S. Coast Guard decided to use helicopters to carry out the survivors. The nearest were located at the Coast Guard Air Stations, Brooklyn, New York, and Elizabeth City, North Carolina, in the United States. In fact, these were the only helicopters operating in the Coast Guard at the time.
Helicopters were just out of their infancy in 1946, moving into the adolescent stage—Igor Sikorsky had made the first helicopter flight just six years earlier. [See TDiA, 14 September 1939] However, the U.S. Coast Guard had pioneered helicopter development alongside Sikorsky as the military service responsible for the testing and evaluation of helicopters during the latter years of World War II. This would be their first large scale rescue which would prove the helicopter’s amazing capabilities.
A U.S. Coast Guard HNS-1 Hoverfly, 39051, flown by Lieutenant Stewart R. Graham transports one survivor from near the crashed airliner. (Igor I. Sikorsky Historical Archives)Captain Richard L. Burke USCG
On 20 September 1946, two days after the airliner crashed, orders were received from the East Area Rescue Officer, Captain Richard L. Burke, U.S. Coast Guard, to prepare a Sikorsky R-4/HNS-1 helicopter for immediate shipment to Gander to take part in the rescue of survivors of a crashed Belgian airliner. Instructions were given by telephone to Lieutenant Alvin Nightingale Fisher, USCG, at Elizabeth City to begin disassembly of an HNS-1 for transport aboard a C-54 Skymaster (the military version of the Douglas DC-4). No details were available on the orders for Air Station Brooklyn, New York.
Lt. Alvin N. Fisher, USCG
An Army Air Forces C-54 from Westover Field, near Springfield, Massachusetts, arrived at Elizabeth City at 9:25 p.m., local time, on the 20th. The disassembled fabric-covered HNS-1, serial number 39051, and its crew were loaded aboard and the transport departed at 11:25 p.m. for the 1,215 nautical mile (1,298 statute miles/2,250 kilometers) journey, landing at Gander at 8:55 a.m., the next morning. The helicopter was unloaded and assembly began at once.
While the helicopter was being reassembled, the pilots were taken to the scene of the crash by a PBY from Argentia, and plans were laid for flying the survivors out by helicopter. It was decided to drop lumber at the clearing nearest the crash for the purpose of constructing a small landing platform as the muskeg would not support the weight of the helicopter. A second platform was built on the edge of the lake approximately 7 miles (11 kilometers) from the clearing so that survivors could be transferred at this point to PBYs and flown to Gander.
A Sikorsky HOS-1 approaches two PBYs on Gander Lake. (U.S. Coast Guard)
While the Elizabeth City Sikorsky HNS-1 was being prepared for flight, another helicopter, the metal-clad Sikorsky R-6/HOS-1, serial number 23470, a newer and more powerful machine, was also on the scene being readied. The HOS-1 from Air Station Brooklyn arrived at Gander some twenty minutes before the Elizabeth City machine and was reassembled and ready for flight before the HNS-1.
Coast Guard aviation machinist’s mates work on reassembling the Sikorsky HNS-1. (U.S. Coast Guard)
Chief Aviation Machinist’s Mates Oliver F. Berry, Leo Brzycki, and AAM1 Merwin Westerberg were the primary mechanics in charge of the disassembly and reassembly of the HNS-1, while Chief Aviation Machinist’s Mate Vanelli was the primary mechanic for the HOS-1. (Other personnel could not be identified.)
Aviation machinist’s mates work on the HOS-1 at Gander. (U.S. Coast Guard)
Taking the helicopters apart in order to airlift them on transport aircraft, then putting them back together on arrival at Gander was critical to the operation. After reassembly of the Elizabeth City and during the run-up prior to its test flight, someone approached too close to the turning rotors and the test pilot did an emergency shut down. This caused a pin to shear and it was dark before the trouble could be remedied.
The Brooklyn HOS-1 managed to evacuate 8 people before dark on the 21st, all of whom had to be carried by stretcher due to the severity of their injuries.
Ground personnel off-load an ambulatory survivor from HOS-1 23470
The next day, the 22nd, both helicopters were used to fly out the remaining survivors by making repeated flights between the crash site and Gander Lake, a distance of about 12 miles (19 kilometers). The 18 survivors were placed in wire Stokes litters attached to the outside of the HNS-1 helicopter, and inside the hastily-modified HOS-1. One at a time they were flown to Wolf Lake where they were further stabilized by the U.S. Army medics. The survivors were then placed in inflatable life rafts and rowed out to a PBY-5A on the lake. They were taken aboard the amphibian and flown to Gander Airport where they were able to receive more extensive medical care.
A survivor in a Stokes litter is transferred to life raft to be rowed out to a waiting PBY-5A Catalina. (U.S. Coast Guard)
The helicopters and PBY-5As made numerous trips before all eighteen survivors were evacuated to Gander Airport. In addition, the helicopters withdrew the fourteen members of the Army’s ground rescue team, and several others. The following day, after all survivors had been flown out, the investigators and airline officials were flown in by helicopter. In all, the helicopters made forty flights into the clearing. Landings, both at the clearing and at the lake, were made on the wooden platforms, thus permitting maximum performance of the helicopters.
A U.S. Coast Guard Consolidated PBY-5A Catalina 48314 on Gander Lake with injured survivors of the SABENA crash. (National Naval Aviation Museum 1993.501.073.116)
The U.S. Coast Guard helicopter pilots were Commander Frank Anderson, Lieutenant Commander Stewart Graham, Lieutenant Walter Bolton and Lieutenant August Kleisch. Three of these four officers had begun their Coast Guard careers as enlisted men.
The aircrews received the U.S. Air Medal, while the government of Belgium presented the Chevalier (Knight) of the Order of Leopold to all for the rescue.
Lieutenant Commander Frank Arthur Erickson, U.S. Coast Guard, at the controls of a Sikorsky HNS-1, circa 1946. (Coast Guard Historian’s Office)
Captain Frank Arthur Erickson, United States Coast Guard. (6 November 1907–17 December 1978) Captain Erickson was designated Coast Guard Aviator No. 32 in 1935, and later, Coast Guard Helicopter Pilot No. 1. On 3 January 1944, then Commander Erickson carried out the first-ever helicopter life saving mission when he delivered plasma for the survivors of USS Turner (DD-648) from Battery Park, New York, to a hospital at Sandy Hook. This occurred during a severe snow storm. Captain Erickson is internationally recognized for his pioneering efforts of helicopter rescues, hydraulic hoist systems, and flight stabilization systems. Erickson Hall at the Aviation Training Center, Mobile, Alabama, where the Coast Guard aircraft flight simulators are located, was named in his honor. Captain Ericson graduated from the U.S. Coast Guard Academy in 1931 and was commissioned an ensign. He served until retirement in 1954.
Lieutenant Stewart R. Graham, USCG, in cockpit of Sikorsky HNS-1 near Gander, Newfoundland, September 1946. (U.S. Coast Guard)
Commander Stewart Ross (“Stew”) Graham, United States Coast Guard. (25 September 1917–13 August 2016) Commander Graham was designated Coast Guard Aviator No. 114 in 1942, and then Coast Guard Helicopter Pilot No. 2 in 1943. He was the leading pilot in pioneering Anti-Submarine Warfare tactics, and trained U.S. Navy pilots to conduct these critical missions. Commander Graham was awarded the Distinguished Flying Cross and two Air Medals. He was appointed Chevalier de l’Ordre de Léopold (Knight) by tPrince Charles, Regent of Belgium, for helicopter rescues.
August Kleisch
Lieutenant Commander August (“Gus”) Kleisch, United States Coast Guard. (2 October 1908–26 October 2003) Lieutenant Commander Kleisch was designated as an Enlisted Aviation Pilot in 1935, and after commissioning in 1942, Coast Guard Aviator No. 109. In 1943, at Coast Guard Air Station Brooklyn (located at Floyd Bennett Field, Brooklyn, New York, he qualified as Coast Guard Helicopter Pilot No. 5. In 1945, “Gus” Kleisch pioneered the first use of a training helicopter to rescue seven crewmembers of a Canadian PBY flying boat which had been forced down in a remote area of Labrador. He also delivered two medical officers to the scene. For his heroism and innovation, he was awarded the Distinguished Flying Cross by the U.S. Navy, and the Royal Canadian Air Force Cross by Prime Minister of Canada. He was appointed Chevalier de l’Ordre de Léopold (Knight) by Prince Charles, Regent of Belgium, for the rescue of the SABENA survivors. Lieutenant Commander Kleisch served in the United States Coast Guard from 1927 until he retired in 1959.
ACMM Oliver F. Berry USCG
Chief Machinist’s Mate Oliver Fuller Berry, United States Coast Guard. (8 March 1908–13 September 1991) ADC Berry was one of the world’s first helicopter maintenance specialists. A distinguished expert mechanic on original Coast Guard aircraft, he was a lead instructor at the very first United States military helicopter training unit. He contributed significantly to the 1946 SABENA crash rescue operation. Of exemplary character, extraordinary technical knowledge, exceptional planning talent, and superior leadership traits, his untiring quest for excellence established the ensuing high standards characterizing Coast Guard aviation maintenance. The Chief Oliver F. Berry Aviation Maintenance Award was established in Chief Berry’s honor, and he is the namesake of the Sentinel-class cutter USCGC Oliver Berry (WPC 1124).
Sikorsky XR-4C 41-18874 at the National Air and Space Museum. (NASM)
The Vought-Sikorsky VS-316A (which was designated XR-4 by the U.S. Army Air Corps and assigned serial number 41-18874), established the single main rotor/anti-torque tail rotor configuration. It was a two-place helicopter with side-by-side seating and dual flight controls. The fabric-covered three-blade main rotor was 38 feet (11.582 meters) in diameter and turned counter-clockwise as seen from above. (The advancing blade is on the helicopter’s right). The three-blade tail rotor was mounted to the right of the tail boom in a tractor configuration, and rotated clockwise when seen from the helicopter’s left side. (The advancing blade was below the axis of rotation.)
The XR-4 was 33 feet, 11.5 inches (10.351 meters) long and 12 feet, 5 inches (3.785 meters) high. It weighed 2,010 pounds (911.7 kilograms) empty and the maximum gross weight was 2,540 pounds (1,152.1 kilograms).
The VS-316A had originally been powered by a 499.8-cubic-inch-displacement (8.19 liter) air-cooled Warner Aircraft Corporation Scarab SS-50 (R-500-1) seven-cylinder radial engine, rated at 145 horsepower at 2,050 r.p.m. In the XR-4 configuration, the engine was upgraded to an air-cooled, direct-drive 555.298-cubic-inch-displacement (9.100 liter) Warner Super Scarab SS185 (R-550-3) seven-cylinder radial engine with a compression ration of 6.20:1. The R-550-3 was rated at 185 horsepower at 2,175 r.p.m. at Sea Level, and 200 horsepower at 2,475 r.p.m (five minute limit) for takeoff. The engine was placed backwards in the aircraft with the propeller shaft driving a short driveshaft through a clutch to a 90° gear box and the transmission. The R-550-3 weighed 344 pounds (156 kilograms).
The XR-4 was redesignated XR-4C. This would be the world’s first production helicopter. It is at the Steven F. Udvar-Hazy Center of the Smithsonian National Air and Space Museum.
U.S. Coast Guard Sikorsky HOS-1
Sikorsky designed the HOS-1(R-6) as a follow on to his fabric covered HNS-1 (R-4). While retaining the R-4’s rotor and transmission system, the R-6 had an all-metal fuselage. In October 1944 the first of three XHOS-1 were delivered to the US Navy and transferred to the US Coast Guard Air Station Brooklyn, Floyd Bennett Field, for test and evaluation. One of these crashed.
The Navy then acquired 36 HOS-1 (R-6A) from the Army Air Force which were purchased by the Coast Guard between January 1945 and January 1946. Of these, two were destroyed in crashes (no fatalities), and the majority of the remaining helicopters were returned to the Navy or disposed of with the closing of the helicopter training school.
On 18 June 1946 CDR Erickson was moved to the Coast Guard Elizabeth City air station. His downsized Helicopter Test and Development Unit consisted of a small group of dedicated personnel, one hangar, one HNS and two HOS helicopters. This was the thread that kept the Coast Guard helicopter program alive.
General characteristics
Crew: one
Capacity: one observer
Length: 47 ft 11 in (14.61 m)
Gross weight: 2,600 lb (1,179 kg)
Powerplant: 1 × Franklin O-405-9 piston, 240 hp (180 kW)
Main rotor diameter: 38 ft 0 in (11.58 m)
Performance
Maximum speed: 100 mph (160 km/h, 87 kn) – this new aircraft could attain 100 mph compared with 82 mph by the earlier design.
Graf Zeppelin over the airship hangars at Friedrichshafen. (The Lothians collection)
18 September 1928: The rigid airship, Graf Zeppelin, LZ 127, made its first flight at Friedrichshafen, Germany.
Graf Zeppelin was named after Ferdinand Adolf Heinrich August Graf von Zeppelin, a German general and count, the founder of Luftschiffbau Zeppelin GmbH (the Zeppelin Airship Company). The airship was constructed of a lightweight metal structure covered by a fabric envelope. It was 776 feet (236.6 meters) long. Contained inside were 12 hydrogen-filled buoyancy tanks, fuel tanks, work spaces and crew quarters.
A gondola mounted underneath contained the flight deck, a sitting and dining room and ten passenger cabins. The LZ-127 was manned by a 36 person crew and could carry 24 passengers.
A dining room aboard Graf Zeppelin.
LZ 127 was powered by five water-cooled, fuel injected 33.251 liter (2,029.1 cubic inches) Maybach VL-2 60° V-12 engines producing 570 horsepower at 1,600 r.p.m., each. Fuel was either gasoline or blau gas, a gaseous fuel similar to propane. The zeppelin’s maximum speed was 80 miles per hour (128 kilometers per hour).
During the next nine years, Graf Zeppelin made 590 flights, including an around the world flight, and carried more than 13,000 passengers. It is estimated that it flew more than 1,000,000 miles. After the Hindenburg accident, it was decided to replace the hydrogen buoyancy gas with non-flammable helium. However, the United States government refused to allow the gas to be exported to Germany. With no other source for helium, in June 1938, Graf Zeppelin was deflated and placed in storage.
In his excellent history of the Royal Air Force leading up to the Battle of Britain, Duel of Eagles, Group Captain Peter Wooldridge Townsend, CVO, DSO, DFC and Bar, describes how Germany used Graf Zeppelin for reconnaissance missions, occasionally overflying the British Isles in poor weather due to “navigational errors.” The airship was scouting for radar sites and RAF radio frequencies. (This airship may have been Graf Zeppelin II, LZ 130.)
Both airships were scrapped and their duralumin structures salvaged.