Category Archives: Aviation

6 November 1935

Test pilot George Bulman in the cockpit of the prototype Hawker Monoplane F.36/34, K5083.

6 November 1935: The prototype Hawker Monoplane F.36/34, K5083, first flew at the Brooklands Aerodrome, Weybridge, Surrey, with Hawker’s Chief Test Pilot, Flight Lieutenant Paul Ward Spencer (“George”) Bulman, M.C., A.F.C., Royal Air Force Reserve,¹ in the cockpit. The airplane would be named “Hurricane” and become one of the most successful fighter aircraft of World War II.

Designed by Sydney Camm to meet a Royal Air Force Specification for a high speed monoplane interceptor, the airplane was developed around the Rolls-Royce PV-12 engine.

Sir Sydney Camm, CBE, FRAeS
Sir Sydney Camm, C.B.E., F.R.Ae.S. (1893–1966)

The Hurricane was built in the traditional means of a light but strong framework covered by doped linen fabric. Rather than wood, however, the Hurricane’s framework used high strength steel tubing for the aft fuselage. A girder structure covered in sheet metal made up the forward fuselage. A primary consideration of the fighter’s designer was to provide good visibility for the pilot. The cockpit sits high in the fuselage and gives the airplane its characteristic hump back profile. The cockpit was enclosed by a sliding canopy. The landing gear was retractable.

Hawker Monoplane F.36/34, K5083, front view. (World War Photos)
Hawker Monoplane F.36/34, K5083, the prototype Hawker Hurricane, photographed prior to its first flight. Note the flush exhaust ports and wooden fixed-pitch propeller. Photograph © IWM (MH 5475)
Right Profile of the prototype Hawker Hurricane, K5083. (© IWM-MH-5190)
Right profile of the prototype Hawker Monoplane F.36/34, K5083. © IWM (MH-5190)
Left profile (IWM)
Hawker Monoplane F.36/34, K5083. Left profile. © IWM (ATP 8654D)
Hawker Monoplane F.36/34, K5083, left rear quarter view. (World War Photos)

The Rolls-Royce PV-12 (“PV” stood for Private Venture) was a developmental liquid-cooled 1,649-cubic-inch-displacement (27.022 liter) 60° V-12 that would become the legendary Merlin aircraft engine. The PV-12 first ran in 1933 and initially produced 700 horsepower.

The engine was progressively improved and by the time the Hurricane prototype first flew, it was equipped with a supercharged Rolls-Royce Merlin C, Air Ministry serial number 111144. The Merlin C had a Normal Power rating of 1,029 horsepower at 2,600 r.p.m, at an altitude of 11,000 feet (3,353 meters), with +6 pounds per square inch boost. The V-12 engine turned a Watts two-bladed fixed-pitch wooden propeller through a gear reduction drive (possibly 0.420:1).

Right profile of the prototype Hawker Hurricane, K5083. Photograph © IWM (MH 5190)
Right quarter view of the prototype Hawker Monoplane F.36/34, K5083, in flight. Photograph © IWM (MH 5190)

An Aeroplane and Armament Experimental Establishment (A&AEE) test pilot, Flight Sergeant Samuel (“Sammy”) Wroath (366485), flew K5083 at the Martlesham Heath in early 1936. He wrote, “The aircraft is simple to fly and has no apparent vices.”

In early flight testing, K5083 had a maximum speed of 253 miles per hour (407 kilometers per hour) at Sea Level, an reached 315 miles per hour (507 kilometers per hour) at 16,200 feet (4,938 meters), with the Merlin turning 2,960 r.p.m., with +5.7 pounds of boost (0.39 Bar). The speed exceeded the RAF’s requirement by 5 miles per hour (8 kilometers per hour).

The prototype was able to take off in as little as 795 feet (242 meters) and to climb to 15,000 feet (4,572 meters) in just 5 minutes, 42 seconds. It reached 20,000 feet (6,096 meters) in 8 minutes, 24 seconds. The peak altitude reached was 30,000 feet (9,144 meters). The prototype’s estimated service ceiling was 34,500 feet (10,516 meters)and the estimated absolute ceiling was 35,400 feet (10,790 meters).

In May 1939 Hawker Monoplane F.36/34 K5083 was classified as a ground instruction airframe, with serial number 1112M. Reportedly, it remained in airworthy condition until 1942. Its status after that is not known.

Hawker Monoplane F.36/34 K5083 with “alighting gear” extended. (World War Photos)

The Hawker Hurricane Mk.I was ordered into production in the summer of 1936. The first production airplane, L1547, flew on 12 October 1937. The Hurricane Mk. I retained the wooden fixed-pitch propeller and fabric-covered wings of the prototype, though this would change with subsequent models.

The first production Hawker Hurricane Mk.I, L1547, circa October 1937. This airplane, assigned to No. 312 Squadron, was lost 10 October 1940, when it caught fire during a training flight near RAF Speke. The pilot, Sergeant Otto Hanzliĉek, parachuted from the airplane, but he landed in the Mersey River and drowned.

The Hurricane Mk.I was 31 feet, 5 inches (9.576 meters) long with a wingspan of 40 feet, 0 inches (12.192 meters), and overall height of 13 feet, 3 inches (4.039 meters) in three-point attitude. The wings had a total area of 257.6 square feet (23.9 square meters). Their angle of incidence was 2° 0′, and the outer wing panels had 3° 30′ dihedral. The leading edges were swept aft 5° 6′. The empty weight of the Hurricane I was 5,234 pounds (2,374 kilograms) and maximum gross weight was 6,793 pounds (3,081 kilograms).

The Hurricane Mk.I was powered by a Rolls-Royce Merlin Mk.II or Mk.III. The Mk.III was rated at 1,030 horsepower at 3,000 r.p.m. at 16,250 feet (4,953 meters). The engine turned a propeller with a diameter of 11 feet, 3 inches (3.429 meters).

Hawker Monoplane F.36/34 K5083 (BAE Systems)

The Mk.I’s best economical cruising speed was 212 miles per hour (341 kilometers per hour) at 20,000 feet (6,096 meters), and its maximum speed was 316 miles per hour (509 kilometers per hour) at 17,750 feet (5,410 meters) and 6,440 pounds (2,921 kilograms). The airplane’s range was 585 miles (941 kilometers). The Hurricane Mk.I could climb to 20,000 feet in 9.7 minutes.

The fighter was armed with eight Browning .303 Mark II machine guns mounted in the wings, with 334 rounds of ammunition per gun.

“No. 111 Squadron was responsible for the introduction of the Hurricane to the RAF with the first aircraft arriving at Northolt in December 1937, in advance of the official acceptance date of 1 January 1938. The CO, S/Ldr John Gillan, flew L1555 in record time from Edinburgh to Northolt on 10 February 1938.” (Daily Mail)

Peter Townsend described the Hurricane in his book, Duel of Eagles:

“. . . By December [1938] we had our full initial equipment of sixteen aircraft. The Fury had been a delightful play-thing; the Hurricane was a thoroughly war-like machine, rock solid as a platform for eight Browning machine-guns, highly manoeuverable despite its large proportions and with an excellent view from the cockpit. The Hurricane lacked the speed and glamour of the Spitfire and was slower than the Me. 109, whose pilots were to develop contempt for it and a snobbish preference for being shot down by Spitfires. But figures were to prove that during the Battle of Britain, machine for machine, the Hurricane would acquit itself every bit as well as the Spitfire and in the aggregate (there were more than three Hurricanes to two Spitfires) do greater damage among the Luftwaffe.”

Duel of Eagles, Group Captain Peter Wooldridge Townsend, CVO, DSO, DFC and Bar, RAF. Cassell Publishers Limited, London, Chapter 13 at Pages 153–154. 

Hawker Hurricanes at Brooklands. (BAE Systems)

At the beginning of World War II, 497 Hurricanes had been delivered to the Royal Air Force, enough to equip 18 squadrons. During the Battle of Britain, the Hurricane accounted for 55% of all enemy aircraft destroyed. Continuously upgraded throughout the war, it remained in production until July 1944. The final Hurrican, a Mk.IIc, PZ865, was flown for the first time by P.W.S. Bulman on 24 July 1944. A total of 14,503 were built by Hawker Aircraft Ltd., Gloster Aircraft Company, Austin Motor Company, and the Canadian Car and Foundry Company.

The final Hawker Hurricane, a Mk.IIc, PZ865, “The Last of the Many!” Chief Test Pilot P.W.S. “George” Bulman also took this fighter for its first flight, 22 July 1944. (BAE Systems)
P.W.S. Bulman with PZ865, July 1944.
Group Captain “George” Bulman flying the final Hawker Hurricane, PZ865, a Mk.IIc.

¹ Later, Group Captain Paul Ward Spencer Bulman, C.B.E., M.C., A.F.C. and Bar.

© 2018, Bryan R. Swopes

5 November 1959

The Number 2 X-15, 56-6671, broke in half when it made an emergency landing while still partially loaded with propellants. (NASA)
The Number 2 X-15, 56-6671, broke in half when it made an emergency landing while still partially loaded with propellants. (NASA)

5 November 1959: During his fourth X-15 flight—the third in the Number Two ship, 56-6671—North American Aviation chief test pilot Albert Scott Crossfield made an emergency landing at Rosamond Dry Lake after one of the two Reaction Motors XLR11-RM-13 rocket engines exploded, causing an engine compartment fire.

The X-15 had been launched by the Boeing NB-52A Stratofortress, 52-003, at 0.82 Mach and approximately 45,000 feet (13,716 meters) over Bouquet Canyon Reservoir, about 35 miles (56 kilometers) southwest of Edwards Air Force Base. Scott Crossfield ignited both XLR11 rocket engines and began to accelerate and climb, but one of four combustion chambers of the lower engine exploded almost immediately. He shut both engines down after 11.7 seconds. Crossfield kept the rocketplane in a level attitude for the 114 seconds it took to jettison the liquid oxygen and water-alcohol propellants to lighten the X-15 for the landing. The tanks could not fully drain and the aircraft remained approximately 1,000 pounds (455 kilograms) overweight.

The X-15 approached the emergency landing site at Rosamond Dry Lake, about ten miles (16 kilometers) southwest of Edwards, while Major Robert M. White, flying a Lockheed F-104 chase plane, called out Crossfield’s distance from the dry lake and his altitude. As he neared the touch down point, Crossfield raised the X-15’s nose to decelerate.

“I lowered the skids and nose wheel, pulled the flaps, and felt for the lake bed.

“The skids dug in gently. The nose wheel slammed down hard and the ship plowed across the desert floor, slowing much faster than usual. Then she came to a complete stop within 1500 feet instead of the usual 5000 feet. Something was wrong; the skids failed, I was sure. . . Quickly I scrambled out of the cockpit. What I saw almost broke my heart. The fuselage had buckled immediately aft of the cockpit, two hundred and thirty inches back from the nose. Her belly had dragged in the sand, causing the abrupt deceleration on the lake. The rocket chambers which had exploded at launch were a shambles.”

Always Another Dawn: The Story of a Rocket Test Pilot, by A. Scott Crossfield and Clay Blair, Jr., The World Publishing Company, Cleveland and New York, 1960, Chapter 41 at Pages 383–384.

The scene at Rosamond Dry Lake after Scott Crossfield's emergency landing after an engine explosion. (NASA)
The scene at Rosamond Dry Lake after Scott Crossfield’s emergency landing following an engine explosion. (NASA)

It was determined that the engine had exploded due to an ignition failure, a relatively simple problem not connected to the design of the X-15. But there remained the question as to why the rocketplane had broken in half. The investigation found that the rapid extension of the nose wheel strut when lowered caused the oil inside the strut to foam and vaporize, providing almost no shock absorption. This was corrected and the check list changed to lower the gear sooner.

The total duration of this flight was 5 minutes, 28.0 seconds. The peak altitude was 45,462 feet (13,857 meters) and the maximum speed was 660 miles per hour (1,062 kilometers per hour).

56-6671 was taken back to the North American Aviation plant for repair. It returned to flight operations three months later.

Test pilot A. Scott Crossfield with the damaged X-15 (UPI/Harry Ransom Center
Test pilot A. Scott Crossfield with the damaged X-15 on Rosamond Dry Lake. (UPI/Harry Ransom Center, University of Texas at Austin)

© 2016, Bryan R. Swopes

5 November 1911 (00:04, 6 November UTC)

Cal Rodgers departs Sheepshead Bay, New York aboard his Wright Model EX, Vin Fiz, 4:30 p.m., 17 September 1911. (NASM SI-A-3475_640)

5 November 1911: At 4:04 p.m., (00:04, 6 November UTC) Calbraith Perry Rodgers completed the first transcontinental flight when he landed at Tournament Park, Pasadena, California, in front of a crowd of 20,000 spectators.

Only a few months earlier Cal Rodgers had been taught to fly by Orville Wright at Huffman Prairie, Ohio. On 7 August he had been awarded Fédération Aéronautique Internationale (FAI) pilot certificate number 49.

Calbraith Perry Rodgers, 1879–1912. (Wright Bros. Aeroplane Co.)

In October 1910, newspaper publisher William Randolph Hearst offered a prize of $50,000 to anyone who flew an airplane across the North American continent in 30 days or less. The prize offer would expire 11 October 1911.  Rodgers bought a Wright Model EX from the Wright brothers, who were skeptical that any airplane could hold together for that long of a flight, but they eventually agreed to sell the airplane to him. Armour Meatpacking Company of Chicago agreed to sponsor the cross country flight as a means of advertising their grape soft drink, Vin Fiz. Rogers named his airplane after the soft drink. (Vin Fiz also sponsored Harriet Quimby.)

An Vin Fiz advertisement showing the route of Cal Rodgers transcontinental journey in the collection of the National Air and Space Museum. (NASM)

The Wright Model EX was built as an exhibition airplane. It was developed from the 1910 Model R, with shorter wings and some other improvements to reduce aerodynamic drag. It was a single-place biplane with a length of 21 feet, 6 inches (6.553 meters) and a wingspan of 31 feet, 6 inches (9.601 meters). It was powered by a water-cooled Wright inline 4-cylinder engine which produced 30 horsepower, driving two propellers in pusher configuration by means of chain drive. Its top speed was approximately 62 miles per hour (99.8 kilometers per hour).

Rogers and Vin Fiz took off from Sheepshead Bay, New York, at 4:30 p.m., Eastern Standard Time (21:30 UTC), 17 September 1911.

Cal Rodgers was accompanied by a special six car train that provided living quarters, support personnel and a hangar car for maintenance. He paid Charlie Taylor, the Wright’s’ mechanic, $70 per week to accompany the flight and perform the necessary maintenance on the airplane. The top of the rail cars were marked to allow Rodgers to follow the train in and around the larger cities as a form of navigation.

The total duration of the flight was 49 days, 2 hours, 34 minutes. The transcontinental flight required more than 70 landings for fuel, maintenance or repairs. By the time that he arrived at Pasadena, California, Hearst’s prize offer had already expired. The city of Long Beach offered him $1,000 if he would fly to the shoreline of their city to complete the journey. After spending the night at Pasadena, Rodgers took off on the final leg, only 25 miles, but he crashed at Compton, and was seriously injured. It was nearly a month before he had recovered sufficiently to fly the rest of the way to Long Beach, which he did with a crutch tied to the airplane’s wing. He landed on the beach there, 10 December 1911.

Cal Rodgers and Vin Fiz at Long Beach, California, 5 November 1911. The airplane was rolled into the water for dramatic effect. (NASM)

© 2018, Bryan R. Swopes

4 November 1962, 06:30 GMT

Dominic Tightrope fireball, 00:00 GMT, 4 November 1962. (Nuclear Weapons Archive)
Dominic Tightrope fireball, 06:30 GMT, 4 November 1962. (Nuclear Weapons Archive)

4 November 1962: A Western Electric M6 Nike Hercules air-defense guided missile was launched from Johnston Island in the North Pacific Ocean. The missile was armed with a  W-31 Mod 1 nuclear warhead, and had been modified to include a command arm/fire capability, and an automatic disarm feature.

At an altitude of 69,000 feet (21,031 meters), 2 miles (3.2 kilometers) south-southwest of the island, the warhead detonated with an explosive yield of 12 kilotons.

This nuclear weapon effects test, Dominic Tightrope, was the final test of the Operation Dominic I test series, and was the last atmospheric nuclear test conducted by the United States.

The Nike Hercules was a long-range, high-altitude surface-to-air guided missile, designed and produced by Western Electric Company and the Douglas Aircraft Company. Douglas manufactured the missile at Charlotte, North Carolina. It was a two-stage missile with a cluster of four Hercules Powder Company M5E1 solid-fuel rocket engines as the boost stage.

The Nike Hercules had an overall length of 41 feet, 1.35 inches (12.531 meters). Its weight was 10,710 pounds (4,858 kilograms). The Hercules could reach an altitude of 100,000 feet (30,480 meters) and had a range of 90 miles (145 kilometers). The missile’s maximum speed was Mach 3.65.

The booster stage was 14 feet, 2.845 inches (4.339 meters) long and had a maximum diameter of 3 feet, 7.25 inches (1.099 meters). There were four stabilizing fins spaced at 90°. The fin span was 11 feet, 5.88 inches (3.502 meters). The leading edges were swept aft 24.23°. The booster stage produced 173,600 pounds of thrust (772.211 kilonewtons) and burned for 3.4 seconds.

Nike Hercules second stage.

The second stage was 26 feet, 10.500 inches (8.192 meters) long with a maximum diameter of 2 feet, 7.50 inches (0.800 meters). It had four triangular wings and four small “linealizer” fins, which were also spaced 90°. The maximum wing span was 7 feet, 4.00 inches (2.235 meters). The missile was powered by a Thiokol Chemical Corporation M30 solid-fuel rocket engine which produced 13,750 pounds of thrust (61.163 kilonewtons) and had a burn time of 29 seconds.

A Nike Hercules air defense missile launch. (U.S. Army)
A Nike Hercules air defense missile launch. (U.S. Army)

The Nike air defense missile system used multiple radars to track incoming target aircraft and the outgoing missile. Computer systems analyzed the data and signals were sent to guide the missile toward the target. This was a complex system and multiple missiles were based together at missile sites around the defended area.

The Hercules could be armed with either a M17 high explosive fragmentation warhead or a 20–40 kiloton W-31 nuclear warhead. Although designed to attack jet aircraft, the Nike Hercules also successfully intercepted guided and ballistic missiles, and had a surface-to-surface capability.

The Western Electric SAM-A-25 Nike B was renamed Nike Hercules in 1956 while still in development. It was redesignated Guided Missile, Air Defense M6 in 1958, and MIM-14 in 1963. (“MIM” is Department of Defense terminology for a mobile, ground-launched interceptor missile.) About 25,000 Nike Hercules missiles were built. Initially deployed in 1958, it remained in service with the U.S. Army until 1984.

The W-31 was a boosted fission implosion warhead designed by the Los Alamos Scientific Laboratory. It weighed 900 pounds (408 kilograms) and had a selectable yield of from 2 to 40 kilotons. About 2,550 warheads were produced and remained in service until 1989.

A battery of U.S. Army Nike Hercules SAM-A-25 surface-to-air guided missiles. (U.S. Army)
A battery of U.S. Army Nike Hercules MIM-14 surface-to-air guided missiles. (U.S. Army)

© 2018, Bryan R. Swopes

4 November 1960

At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671.(NASA)
At the left, Boeing NB-52A 52-003 carries X-15 56-6670 while on the right, NB-52B 52-008 carries X-15 56-6671. (NASA)

4 November 1960: This photo shows one of the four attempts NASA made at launching two X-15 aircraft in one day. This attempt occurred November 4, 1960.

None of the four attempts was successful, although one of the two aircraft involved in each attempt usually made a research flight.

In this case, Air Force test pilot Major Robert A. Rushworth flew X-15 #1, 56-6670, on its sixteenth flight to a speed of Mach 1.95 and an altitude of 48,900 feet (14,905 meters).

© 2016, Bryan R. Swopes