Daily Archives: August 12, 2024

12 August 1985

Japan Air Lines’ Boeing 747-146SR, JA8119. (Robin787)

12 August 1985: The worst accident involving a single aircraft occurred when a Boeing 747 operated by Japan Air Lines crashed into a mountain in the Gunma Prefecture, killing 520 persons. There were just 4 survivors.

JAL Flight 123 was a Boeing 747-146SR, registration JA8119. It departed Tokyo International Airport enroute Osaka International Airport. There were 15 crewmembers, led by Captain Masami Takahama, with First Officer Yutaka Sasaki and Second Officer Hiroshi Fukuda. There were 509 passengers aboard.

Flight 123 lifted off at 6:12 p.m., 12 minutes behind schedule. 12 minutes after takeoff, as the 747 was at its cruising altitude, the fuselage rear pressure bulkhead suddenly failed, causing explosive decompression of the cabin. Cabin air then rushed into the unpressurized tail section. The resulting overpressure caused a failure of the APU bulkhead and the support structure for the vertical fin. The airliner’s vertical fin separated from the fuselage. All four of the 747’s hydraulic systems were ruptured. The hydraulic system was quickly depleted, leaving the crew unable to move any flight control surfaces.

JAL 123 following loss of its vertical fin.

Control of the airplane began to quickly deteriorate and the only control left was to vary the thrust on the four turbofan engines. The flight crew began an emergency descent and declared an emergency.

For the next 32 minutes, JA8119 flew in large uncontrolled arcs. The 747 rolled into banks as steep as 60°, and at one point, the nose pitched down into a dive reaching 18,000 feet per minute (91 meters per second). The crew was able to bring the 747 back to a nose-high attitude at about 5,000 feet (1,524 meters), but again lost control. At 6:56 p.m., JAL 123 disappeared from air traffic control radar.

Mount Takamagahara, 1,978.6 meters above Sea Level. (Σ64, via Wikipedia)

The airliner struck a ridge on 1,978.6 meter (6,491.5 feet) Mount Takamagahara at 340 knots (391 miles per hour, or 630 kilometers per hour), then impacted a second time at an elevation of 5,135 feet (1,565 meters). The aircraft was totally destroyed.

The four survivors had been seated in the last three rows of the airliner, though their exact seat assignments have not been determined. Several others actually survived the impact but died from their injuries and exposure before they could be rescued.

Investigation of the accident determined that the 747 had previously been damaged when its tail struck the runway during a landing, 2 June 1978. The rear pressure bulkhead had cracked as a result of the tail strike, but was repaired by a team of Boeing technicians. After the crash, it was discovered that the repair had not been correctly performed. Boeing engineers calculated that it could be expected to fail after 10,000 cycles. It was on the 12,219th cycle when the bulkhead failed.

Boeing 747-146SR JA8119 had accumulated a total of 25,030 flight hours by the time of the accident, on 18,835 flights.

Computer-generated image depicting the damage to JAL Flight 123. (Anynobody via Wikipedia)

© 2017, Bryan R. Swopes

12 August 1977

Space Shuttle prototype Enterprise separates from NASA 905 for its first free flight, 12 August 1977. (NASA)

12 August 1977: At Edwards Air Force Base, California, the prototype Space Shuttle Oriter, Enterprise, (OV-101) was mated to the Boeing 747-100 Shuttle Carrier Aircraft, N905NA, call sign NASA 905, for the first of five approach and landing test flights. On Enterprise‘ flight deck were astronauts Fred Haise and Gordon Fullerton. The crew of NASA 905 were NASA test pilots Fitz Fulton and Tom McMurty with Vic Horton and Skip Guidry as flight engineers.

Space Shuttle Enterprise during the first free flight, 12 August 1977. (NASA)

An estimated 65,000 people had come to Edwards to watch and at 8:00, Fitz Fulton began the take off roll down Runway 22. For the next 38 minutes the spacecraft/aircraft combination climbed together into the desert sky. After reaching an altitude of 24,100 feet (7,346 meters), Fulton put the Shuttle Carrier Aircraft into a shallow dive. At 8:48 a.m., Fred Haise fired the seven explosive bolts holding the two craft together. The 747 entered a descending left turn while Haise banked Enterprise away to the right.

Space Shuttle Orbiiter Enterprise during a glide test. (NASA)
Space Shuttle Orbiter Enterprise during a glide test. (NASA)

As Enterprise made its gliding descent, Haise and Fullerton experimented with the prototype’s flight characterisics and handling. The Shuttle Orbiter touched down on Rogers Dry Lake at 185 miles per hour (297.7 kilometers per hour), and rolled for two miles (3.22 kilometers) before coming to a complete stop.

The first free flight of Enterprise lasted 5 minutes, 21 seconds.

Space Shuttle Enterprise banks to the left to line up with the runway on Rogers Dry Lake. (NASA)
Space Shuttle Enterprise banks to the left to line up with the runway on Rogers Dry Lake. (NASA)

© 2019, Bryan R. Swopes

12 August 1960, 09:39:43 UTC

The Thor Delta launch vehicle at Launch Complex 17A, Cape Canaveral Air Force Station. The spherical capsule containing the Echo 1A is visible at the top of the Altair solid fuel third stage. (NASA)

12 August 1960: At 5:39:43 a.m., Eastern Daylight Savings Time, the Echo 1A experimental passive communications satellite was launched from LC-17A at Cape Canaveral Air Force Station, Florida. The launch vehicle was a Thor-Delta three stage rocket. It entered a nearly circular 944 mile × 1,048 mile orbit (1,519 × 1,687 kilometers). The orbital period was 118.3 minutes.

The satellite was a 100 foot diameter (30.48 meter) Mylar polyester balloon with a reflective surface. The material was just 0.0127 millimeters thick. The mass of the satellite was 66 kilograms (145.5 pounds). In orbit, the balloon envelope was kept inflated by gas from evaporating liquid. It had been constructed by the G.T. Schjeldahl Company, Northfield, Minnesota. This was the second Echo satellite. The first had failed to reach orbit when launched 13 March 1960.

Later the same day, a microwave transmission from the Jet Propulsion Laboratory, Pasadena, California, was reflected off the Echo 1A satellite and received at the Bell Laboratories, Homdel, New York.

According to NASA, “The success of Echo 1A proved that microwave transmission to and from satellites in space was understood and demonstrated the promise of communications satellites. The vehicle also provided data for the calculation of atmospheric density and solar pressure due to its large area-to-mass ratio. Echo 1A was visible to the unaided eye over most of the Earth (brighter than most stars) and was probably seen by more people than any other man-made object in space.”

Echo 1A remained in Earth orbit until 24 May 1968.

An Echo satellite undergoing static inflation tests inside a blimp hangar at Weeksville NAS, North Carolina. The vehicle, which shows scale, is a 1959 Plymouth Suburban 4-door station wagon. (NASA)

The Delta was a three-stage expendable launch vehicle which was developed from the Douglas Aircraft Company’s SM-75 Thor intermediate-range ballistic missile.

Designated Thor DM-19, the first stage was 60.43 feet (18.42 meters) long and 8 feet (2.44 meters) in diameter. Fully fueled, the first stage had a gross weight of 108,770 pounds (49,337 kilograms). It was powered by a Rocketdyne LR-79-7 engine which burned liquid oxygen and RP-1 (a highly-refined kerosene rocket fuel) and produced 170,565 pounds of thrust (758.711 kilonewtons). This stage had a burn time of 2 minutes, 45 seconds.

The second stage was an Aerojet General Corporation-built Delta 104. It was 19 feet, 3 inches (5.88 meters) long with a maximum diameter of 4 feet, 6 inches (1.40 meters). The second stage had a gross weight of 9,859 pounds (4,472 kilograms). It used an Aerojet AJ10-104 rocket engine which burned a hypergolic  mixture of nitric acid and UDMH. The second stage produced 7,890 pounds of thrust (35.096 kilonewtons) and burned for 4 minutes, 38 seconds.

The third stage was an Alleghany Ballistics Laboratory Altair 1. It was 6 feet long, 1 foot, 6 inches in diameter and had a gross weight of 524 pounds (238 kilograms). This stage used a solid-fuel Thiokol X-248 rocket engine, producing 2,799 pounds of thrust (12.451 kilonewtons). Its burn time was 4 minutes, 16 seconds.

© 2016, Bryan R. Swopes

12 August 1960

Major Robert M. White, U.S. Air Force. (NASA)

12 August 1960: At Edwards Air Force Base, California, Major Robert M. White flew the North American Aviation X-15 rocketplane to an altitude of 136,500 feet (41,605 meters), exceeding the previous unofficial record of 126,200 feet (38,466 meters) set by the late Captain Iven C. Kincheloe, Jr., with the Bell X-2, 7 September 1956.

Iven Kincheloe had been assigned as the Air Force’s project pilot for the X-15. When he was killed on a routine flight, Bob White was designated to replace him.

This was White’s fourth flight in an X-15, and the 19th flight of the X-15 Program. The Number 1 rocketplane, serial number 56-6670, was carried aloft under the right wing of the “mothership,” Boeing NB-52A Stratofortress 52-003. At 08:48:43.0 a.m., PDT, 56-6670 was dropped over Silver Lake, near the Nevada-California border. White fired the two Reaction Motors XLR11-RM-13 rocket engines and they burned for 256.2 seconds.

This flight took place in Phase II of the Program and was intended to gradually increase the envelope of X-15 performance with the XLR11 engines while waiting for the much more powerful XLR99. The purpose of Flight 19 was to reach maximum altitude in order to test the rocketplane’s stability and controllability above the atmosphere.

The X-15 accelerated to Mach 2.52, 1,773 miles per hour (2,853 kilometers per hour) while climbing at nearly a 70° angle and reached a peak altitude of 136,500 feet (41,605 meters). After engine shutdown, White glided to a landing on Rogers Dry Lake and touched down. The duration of the flight was 11 minutes, 39.1 seconds.

Neither Kincheloe’s or White’s altitudes are recognized as records by the Fédération Aéronautique Internationale(FAI). Over the next few years, the X-15 would reach to nearly three times higher.

An X-15 is dropped from the NB-52A, 52-003, at an altitude of 45,000 feet at 0.8 Mach. (NASA)

© 2016, Bryan R. Swopes

12 August 1908

Signal Corps Dirigible No. 1 at Fort Myer, Virginia, 1908 (U.S. Army)

12 August 1908: Test flights begin for Signal Corps Dirigible No. 1 at Fort Myers, Virginia, with Thomas Scott Baldwin as pilot and Glenn Hammond Curtiss as flight engineer.

Brigadier General James Allen, Chief Signal Officer, 1906–1913. (U.S. Army)

On 1 August 1907, Brigadier General James Allen, Chief Signal Officer, United States Army, issued a directive establishing the Aeronautical Division within the Signal Corps. Captain Charles Chandler was the officer in charge. Specifications were published in Signal Corps Bulletin No. 5, soliciting bids for both lighter- and heavier-than air vehicles. There were 41 responses. Plans were submitted and a board of officers selected plans for those that seemed most practical.

The lighter-than-air craft was required to be a self-propelled dirigible (a “directable” balloon) able carry two persons and to be able to travel at 20 miles per hour (32.2 kilometers per hour). Thomas Scott Baldwin’s proposal was selected. (The Wright brothers’ Military Flyer was selected as the heavier-than-air winner on 2 August 1909, and designated Signal Corps Airplane No. 1.)

Signal Corps Dirigible No. 1 (SC-1) emerges from its shed at Fort Myer, Virginia, 3 August 1908. (Carl Harry Claudy/NASM-Claudy-205)

On 3 August 1908, Baldwin No. 8 was presented to the Army for trials. Although the the Baldwin No. 8 reached an average speed of just 19.61 miles per hour (31.56 kilometers per hour). It demonstrated the required endurance of two hours, averaging 14 miles per hour (22.5 kilometers per hour). Although the airship’s speed was short of the requirement, on 5 August, the Army purchased it from Baldwin for $5,737.59. The airship was designated Signal Corps Dirigible No. 1.

Contemporary sources give the airship’s dimensions as being 96 feet (29.26 meters) long with a maximum diameter of 19 feet, 6 inches (5.94 meters). The envelope was made of two layers of silk fabric separated by a layer of vulcanized rubber, and supported by 30 wooden frames. Buoyancy was provided by hydrogen gas. The envelope’s volume was approximately 20,000 cubic feet (566 cubic meters).

An open girder beam gondola (or “car”) built of spruce was suspended beneath the balloon. The gondola was 66 feet (20.12 meters) long with a  2½ feet × 2½ feet (0.76 × 0.76 meters) cross section. A water-cooled Curtiss-built inline four-cylinder gasoline engine was mounted at the front end of the gondola. The engine produced 20 horsepower and drove the tractor propeller through a steel drive shaft at 450 r.p.m. The two-bladed spruce propeller had a diameter of 10 feet, 8 inches (3.25 meters) and pitch of 11 feet (3.35 meters).

A two-plane “box-kite” canard elevator unit behind the engine provided control for pitch. The pilot was located behind the control surfaces. Another crew member was at the rear of the gondola, followed by a fixed cruciform stabilizer unit.

The dirigible had a lifting capacity of  1,350 pounds (612.4 kilograms). The payload was 500 pounds (226.8 kilograms).

The U.S. Army’s first aviators, Lieutenants Benjamin D. Fulois, Thomas Etholen Selfridge and Frank P. Lahm were taught to fly the airship. Lahm and Fulois made the first flight of an all-Army crew on 26 August.

Signal Corps Dirigible No. 1 was assigned to the Signal Corps Post at Fort Omaha, Nebraska, where the Army had a balloon factory. It was operated there until 1912. The airships envelope needed to be replaced, and unwilling to spend money for that, the airship was sold.

Second Lieutenants Lahm and Fulois flying Signal Corps Dirigible No. 1 (SC-1) at Fort Myer, Virginia, 28 August 1908. (U.S. Air Force)

© 2017, Bryan R. Swopes